院生発表

同一空間にいるユーザーを対象とした グループ楽曲推薦

2016/2/17 M2 鈴木潤一

目次

- □ 概要
- □ 関連研究
- □ 推薦手法
- □ 実験手法
- □ まとめ

目次

- □ 概要
- □関連研究
- □ 推薦手法
- □ 実験手法
- □ まとめ

お詫びと訂正

□ 修士論文に掲載した数式に誤りがありました。

発表スライドには訂正した数式で実験をやり直した

結果を反映させております。

概要

同一空間にいるユーザーを対象とした グループ楽曲推薦

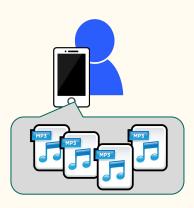
想定しているシチュエーションと目的

- o 同じ場所に集まって音楽を楽しむ(ドライブ,パーティー)
- 個々の所有するデバイスから全員の嗜好を考慮した 楽曲リストの生成,自動再生

概要

複数人が集まるシチュエーション

- ユーザーそれぞれ聴きたい楽曲をデバイスに格納している
- デバイスには楽曲データや楽曲の再生回数が記録されている



選曲をする際はスマートフォンから楽曲を再生

概 要:問題点

パーティーやドライブにおいて

主に使用する楽曲は複数のデバイスに格納された楽曲

ユーザーによって音楽の嗜好が異なる

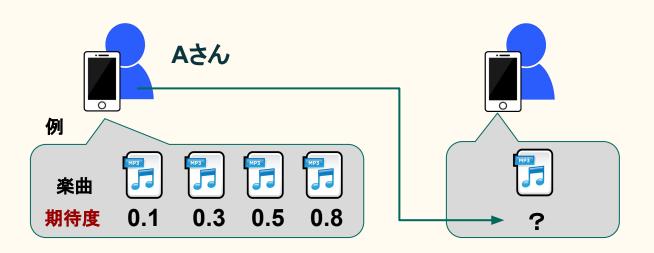
個々人聴きたい曲やアーティストがある

全員の嗜好を満たす選曲は手間や時間を要する 自動的に行われるのが望ましい

仮説1:ユーザーの再生回数が多いと期待度が高い

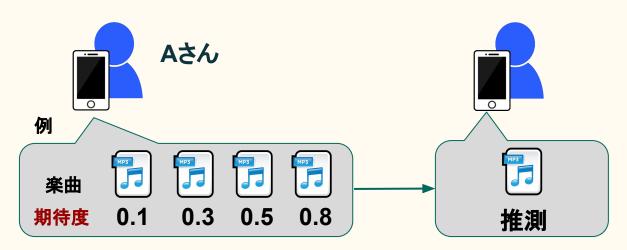
再生回数に応じて「楽曲が再生されたら嬉しい」度合い期待度を推測

Aさんの所持していない楽曲について

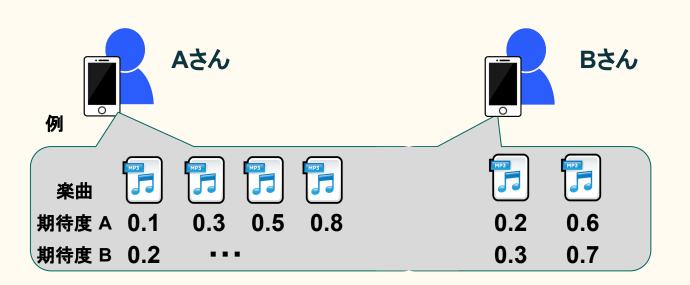


Aさんの再生回数が付与されていない楽曲は Aさんに対して「どの楽曲が再生されたら嬉しい」か分からない

仮説2:類似する曲は期待度も類似する



楽曲間の似ている度合いからAさんの所持していない 楽曲に対して期待度を推測 する



全員のデバイスに記録されているデータから 全員の期待度が高い楽曲リストの生成ができる

関連研究

- □ 概要
- □ 関連研究
- □ 推薦手法
- □ 実験手法
- □ まとめ

関連研究:グループ楽曲推薦

More than the Sum of its Members: Challenges for Group Recommender System

A.jameson [ACM, 2004]

- □ PCやサーバなどの1箇所に全員の楽曲を統合
- □ 一人ひとり再生された楽曲を評価&嗜好情報を蓄積
- □ 蓄積データからプレイリストの生成

関連研究:グループ楽曲推薦

MusicFX: An Arbiter of Group Preferences for Computer Supported Collaborative Workouts

Joseph F.McCarthy [ACM, 2000]

- □ フィットネスジム内にいる複数ユーザーの音楽嗜好を考慮した選曲
- □ ユーザーの楽曲の嗜好を事前に調査
- 蓄積データからプレイリストの生成

関連研究:グループ楽曲推薦

Democratic Music Choice in a Public Space Kenton O'Hara Matthew Lipson

jukola [2004 ACM]

- □ パーティーやBARの店内において客がサーバーに楽曲をアップロード アップロードされた楽曲が店内で再生される
- □ 再生された楽曲に「好き、嫌い」を投票
- □ 投票データを基にリアルタイムにプレイリストを変化させる

関連研究:まとめ

関連研究では

楽曲評価データを蓄積・事前調査してから推薦 事前調査が困難な場合や 複数人が集まってから評価の蓄積を行う事は時間を要する

本研究では

以下のデータから期待度を推測する

- □ デバイス内の楽曲再生回数
- □楽曲間の類似度

推測した期待度を基にグループ推薦

- □ 概要
- □関連研究
- □ 推薦手法
- □ 実験手法
- □ まとめ

複数ユーザーの期待度の推測

推測手順は大きく分けて2つ

自身の所持楽曲

端末内の再生回数から 期待度の推測

未所持楽曲

所持楽曲の期待度と類似度から 期待度の推測

仮説1を用いて推測

仮説2を用いて推測

複数ユーザーの期待度の推測

推測手順は大きく分けて2つ

端末内の再生回数から期待度の推測

仮説1を用いて推測

未所持楽曲

所持楽曲の期待度と類似度から 期待度の推測

仮説2を用いて推測

仮説1:ユーザーの再生回数が多いと期待度が高い

推薦手法:所持楽曲の期待度

仮説1:ユーザーの再生回数が多いと期待度が高い

ユーザー u_i が v 曲所持している時 u_i の所持楽曲を $M_{(u_i)} = \{m_{(u_i,1)}, m_{(u_i,2)}, \dots, m_{(u_i,v)}\}$

楽曲
$$m_{(u_i,n)}$$
の再生回数を $F(m_{(u_i,n)})$ 、所持楽曲の期待度 $W(m_{(u_i,n)})$ について

正規化を行う2式を提案する

式(1)
$$W(m_{(u_i,n)}) = 1 - \frac{1}{F(m_{(u_i,n)})^{\alpha}}$$

式(2)
$$W(m_{(u_i,n)}) = ((\frac{1}{1+e^{-\beta \times F(m_{(u_i,n)})}}) - 0.5) \times 2$$

複数ユーザーの期待度の推測

推測手順は大きく分けて2つ

自身の所持楽曲

端末内の再生回数から 期待度の推測

未所持楽曲

所持楽曲の期待度と類似度から 期待度の推測

仮説1を用いて推測

仮説2を用いて推測

複数ユーザーの期待度の推測

推測手順は大きく分けて2つ

自身の所持楽曲

端末内の再生回数から 期待度の推測

仮説1を用いて推測

未所持楽曲

所持楽曲の期待度と類似度から 期待度の推測

仮説2を用いて推測

仮説2:類似する曲は期待度も類似する

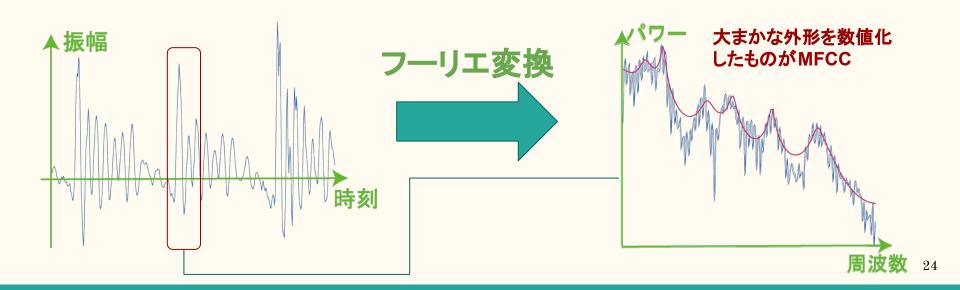
楽曲間の類似度の計測

- 1. 音響類似度 : 楽曲データによる楽曲単位の類似度
 - メル周波数ケプストラム係数(MFCC)を用いた楽曲間の類似度を求める
- E. Pampalk: <u>Computational Models of Music Similarity and their Application in Music Information Retrieval</u>
 Doctoral Thesis, Vienna University of Technology, Austria, March 2006.
- 2. アーティスト類似度 : アーティスト情報によるアーティスト単位の類似度

アーティスト間の類似度 Last.fm API を使用

1. 音響類似度

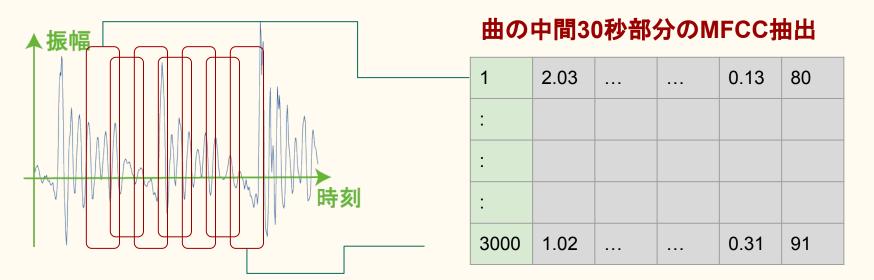
MFCC:スペクトルの概形を表すパラメータ→音色



1. 音響類似度

MFCC

スペクトルの概形を表すパラメータ→音色



1. 音響類似度

MFCCが似ていたら楽曲の音色も似ている EMD(Earth Mover's Distance)を用いて楽曲間距離を計算

楽曲1 mfcc

1	2.03	 	0.13	80
:				
:				
:				
3000	1.02	 	0.31	91

楽曲2 mfcc



1. 音響類似度

楽曲 $m_{(u_i,k)}$ 、 $m_{(u_i,l)}$ 間の楽曲間距離を $D(m_{(u_i,k)},m_{(u_i,l)})$ 類似度を $Similarity(m_{(u_i,k)},m_{(u_i,l)})$ とするとき

音響類似度を以下の様に定義する

$$Similarity_{(m_{(u_{i},k)}, m_{(u_{i},l)})}^{-} = \frac{1}{1 + D(m_{(u_{i},k)}, m_{(u_{i},l)})}$$

2. アーティスト類似度

cst-fm Last.fm API

- ➤ 指定したアーティストの類似アーティストを100件取得
 - アーティスト名
 - アーティスト類似度(0~1の値)

Last.fm APIを用いてアーティスト間の類似度を決定する

2. アーティスト類似度

楽曲 $m_{(u_i,k)}$ 、 $m_{(u_i,l)}$ のアーティストをそれぞれ $A(m_{(u_i,k)})$ 、 $A(m_{(u_i,l)})$ $m_{(u_i,k)}$ の類似アーティスト100件を $S(A(m_{(u_i,k)}))$ 類似度を $L(A(m_{(u_i,k)}),A(m_{(u_i,l)}))$ とするとき アーティスト類似度 $Similarity(A(m_{(u_i,k)}),A(m_{(u_i,l)}))$ を以下の様に定義する Artist

$$Similarity(A(m_{(u_{i},k)}), A(m_{(u_{i},l)})) = \begin{cases} 1 & A(m_{(u_{i},k)}) = A(m_{(u_{i},l)}) \\ L(A(m_{(u_{i},k)}), A(m_{(u_{i},l)})) & (A(m_{(u_{i},l)})) \in \mathcal{S}(A(m_{(u_{i},k)})) \\ 0.01 & (else) \end{cases}$$

楽曲間類似度

```
楽曲 m_{(u_i,k)}, m_{(u_i,l)} について
```

音響類似度 $Similarity (m_{(u_i,k)}, m_{(u_i,l)})$ アーティスト類似度 $Similarity (A(m_{(u_i,k)}), A(m_{(u_i,l)}))$

楽曲間類似度 Similarity $(m_{(u_i,k)}, m_{(u_i,l)})$ とするとき

以下のように統合する

$$Similarity\left(m_{(u_i,k)},m_{(u_j,l)}\right) = Similarity\left(m_{(u_i,k)},m_{(u_j,l)}\right) \times Similarity\left(m_{(u_i,k)},m_{(u_j,l)}\right)$$

$$Artist$$

推薦手法:期待度の推測

未所持楽曲に対する期待度の推測

ユーザー U_i が v曲所持している時 U_i の所持楽曲を $M_{(u_i)} = \{m_{(u_i,1)}, m_{(u_i,2)}, \dots, m_{(u_i,v)}\}$

ユーザー U_j が Z 曲所持している時 U_j の所持楽曲を $M_{(u_j)} = \{m_{(u_j,1)}, m_{(u_j,2)}, \dots, m_{(u_j,z)}\}$

ユーザー
$$U_i$$
 の楽曲 $m_{(u_i,q)}$ に対する期待度 $R(u_i,m_{(u_i,q)})$ について

$$m_{(u_i,q)}$$
 $otin M_{(u_i)}$ を満たすとき

$$m_{(u_i,q)}$$
 \in $M_{(u_i)}$ を満たすとき

$$R(u_{i}, m_{(u_{i},q)}) = \frac{\sum_{k=1}^{n} W(m_{(u_{i},k)}) \times Similarity(m_{(u_{i},l)}, m_{(u_{j},q)})}{\sum_{l=1}^{n} Similarity(m_{(u_{i},l)}, m_{(u_{j},q)})}$$

$$R(u_i, m_{(u_i,q)}) = W(m_{(u_i,q)})$$

推薦手法:アプリケーション

提案する手法について Android端末上で動作するアプリケーションを作成

- 一人で音楽を聴くシチュエーション
- □ 日常的に音楽をAndroidデバイスで聴取,再生回数が記録されている
- □ 楽曲類似度の特徴量MFCCと類似アーティストの取得はその際に取得しておく

推薦手法:アプリケーション

提案する手法について Android端末上で動作するアプリケーションを作成

複数人が同じ場に集まり音楽を聴くシチュエーション

- □ 周辺の同一アプリケーションを最大6端末までBluetoothでグループ化
- 自動でグループ化し、データのやり取りが可能な状態にしておく
- □ 一台が親機となり所持楽曲情報や、類似楽曲特徴量を収集する
- 親機は収集したデータから楽曲リストを生成し楽曲の再生を行いう

3分程のデモ

実験

- □ 概要
- □ 関連研究
- □ 推薦手法
- □ 実験
- □ まとめ

実験:仮説1の検証

仮説1:ユーザーの再生回数が多いと期待度が高い

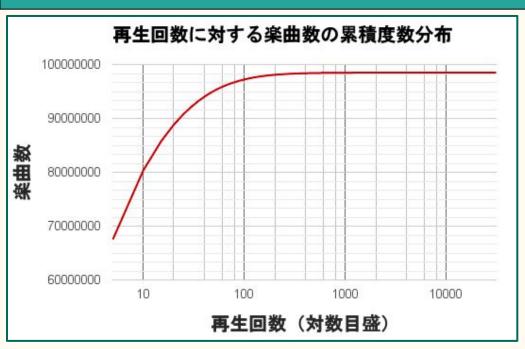
仮説1の検証の為に収集したデータセット(Last.fm)

- □ 対象ユーザー:楽曲評価経験のある10,201ユーザー
- □ ユーザーの再生履歴データ 再生履歴に出現した楽曲の回数を再生回数とする
- □ ユーザーの楽曲評価データ 「無反応」と「好き」の2段階評価データ

データセット例

楽曲	再生回数	評価	
Α	34		
В	2	好き	

実験:仮説1の検証



データセット(Last.fm)の詳細

□ グラフ:楽曲の再生回数に対する

累積度数分布

Min 1: Max 30,145

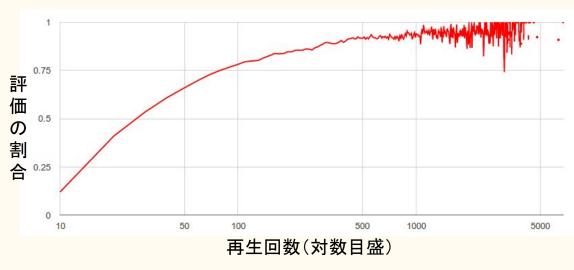
□ 対象ユーザー:10,201人

■ 再生楽曲数:98,504,128曲

□ 最大再生回数:30,145回

再生回数100を超える楽曲は極めて少ない

実験:仮説1の検証



再生回数100を超えると評価率が75%に達する再生回数1000を超えると評価率が80%に達する

検証結果

グラフ:

10再生区切りにした楽曲に対する評価の割合 10再生区切りの母数が10曲以下は不採用

対象ユーザー: 10,201人

再生楽曲数: 98,504,128曲

最大再生回数: 30,145回

内、母数10曲以上の場合6720回

楽曲に対する評価の割合は単調増加で100%に近似していく 仮説1は正しかったと結論付ける

実験:仮説2の検証

仮説2:類似する曲は期待度も類似する

Music Recommendation Datasets for Research(500人の楽曲の再生履歴データ) を用いて再生楽曲が300曲以上の共通曲を所持する3人から成る118グループを用意 %仮説1で用いたデータとは異なる

例 1グループ目 楽曲 M1,M2,M3に対するユーザーA,B,Cの再生回数

	Α	В	С
M1	20	42	424
M2	34	543	49
M3	234	13	54

※楽曲に対して全員の再生回数が既知なデータ

実験:仮説2の検証

- 1. ユーザーの再生回数を期待度に変換(正解データ)
- 2. 共通楽曲をランダムに3等分にし期待度をマスク
- 3. ユーザーの期待度を推測(推測データ)
- □ ユーザーの正解データと推測データの期待度の相関を調べる
- □ 相関関係があるならば仮説2は正しかったと言える

例 1グループ目 ユーザー A, B, C の楽曲 M1, M2, M3に対する期待度

正解データ

	А	В	С
M1	0.43	0.8	0.4
M2	0.54	0.22	0.6
M3	0.235	0.31	0.36

推測データ

	A	В	С
M1	0.43	推測0.7	推測0.2
M2	推測0.8	0.22	推測0.5
M3	推測0.1	推測0.2	0.36

実験:仮定 2の検証

- 1. ユーザーの再生回数を期待度に変換(正解データ)
- 2. 共通楽曲をランダムに3等分にし期待度をマスク
- 3. ユーザーの期待度を推測(推測データ)
- □ ユーザーの正解データと推測データの期待度の相関を調べる
- □ 相関関係があるならば仮説2は正しかったと言える

例 1グループ目 ユーザー A, B, C の楽曲 M1, M2, M3に対する期待度

正解データ

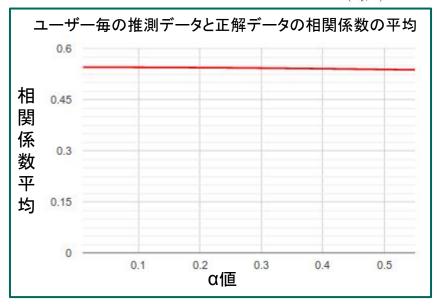
	А	В	С
M1	0.43	正解0.8	正解0.4
M2	正解0.54	0.22	正解0.6
M3	正解0.23	正解0.31	0.36

推測データ

	Α	В	С
M1	0.43	推測0.7	推測0.2
M2	推測0.8	0.22	推測0.5
M3	推測0.1	推測0.2	0.36

実験結果:式(1)を用いた場合

式(1)
$$W(m_{(u_i,n)})=1-\frac{1}{F(m_{(u_i,n)})^{\alpha}}$$

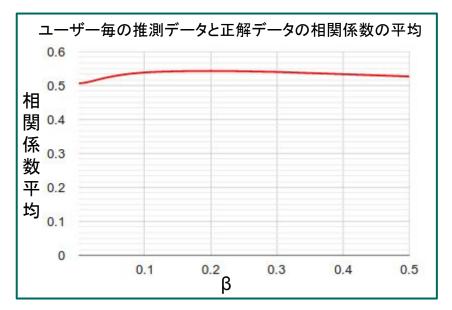


グループ数	ユーザー数	推測した期待度と正解データとの 相関係数平均(最大値)	
		α=0.01	
118	354	0.544	

式(1)の場合α値が0.01の時 相関係数平均が0.544と最も高い

実験結果:式(2)を用いた場合

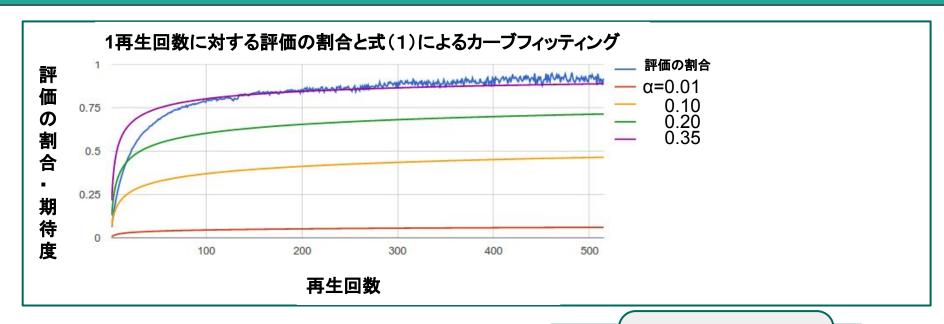
‡(2)
$$W(m_{(u_i,n)}) = ((\frac{1}{1+e^{-\beta \times F(m_{(u_i,n)})}}) - 0.5) \times 2$$



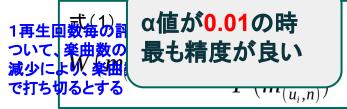
グループ数	ユーザー数	推測した期待度と正解データとの 相関係数平均(最大値)	
		β=0.205	
118	354	0.543	

式(2)の場合β値が0.205の時 相関係数平均が0.543と最も高い

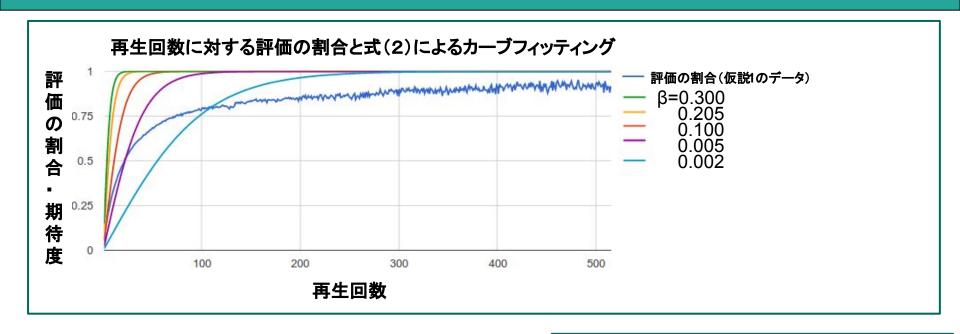
実験:仮定2についての検証



α値	0.01	0.1	0.2	0.35
相関係数平均	0.54473	0.54443	0.54356	0.54134



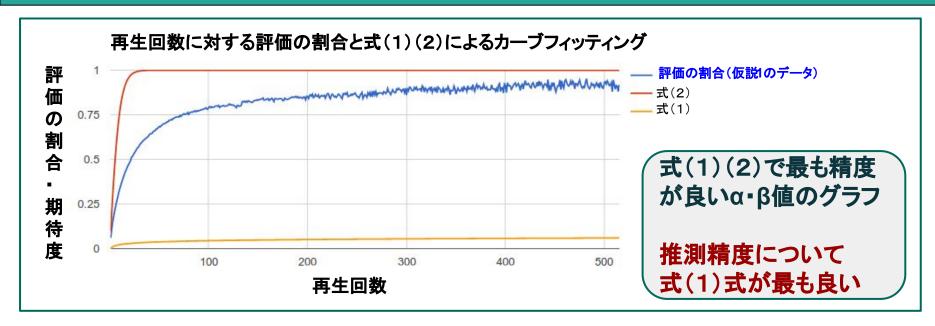
実験:仮定2についての検証



β値	0.3	0.205	0.1	0.05	0.02
相関係数平均	0.5399	0.54295	0.5383	0.5261	0.5124

式(2)

$$W(m_{(u_i,n)}) = ((\frac{1}{1+e^{-\beta \times F(m_{(u_i,n)})}}) - 0.5) \times 2$$

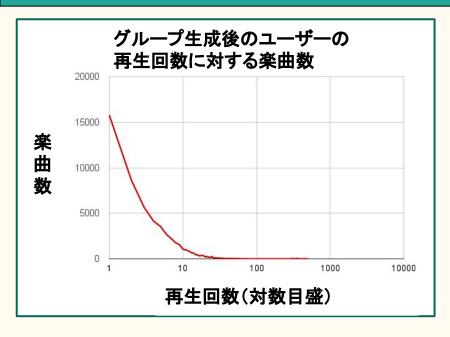


式	(1) α=0.001	(2) β=0.205
相関係数平均	0.5399	0.54295

式(1)
$$W(m_{(u_i,n)}) = 1 - \frac{1}{F(m_{(u_i,n)})^{\alpha}}$$

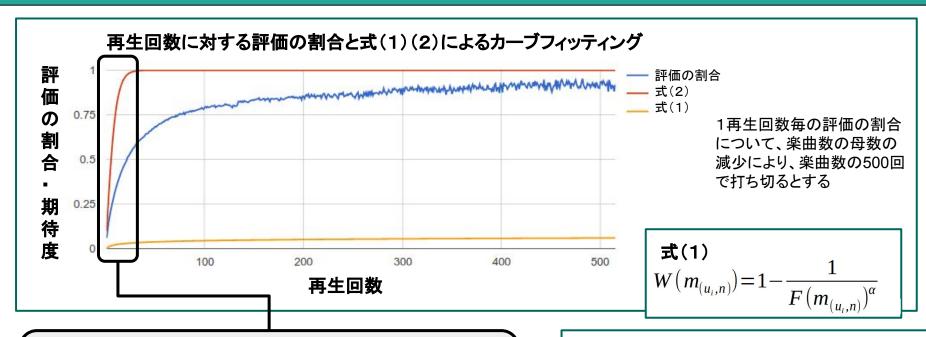
式(2)

$$W(m_{(u_i,n)}) = \left(\left(\frac{1}{1 + e^{-\beta \times F(m_{(u_i,n)})}}\right) - 0.5\right) \times 2$$



3ユーザーのグループの生成について

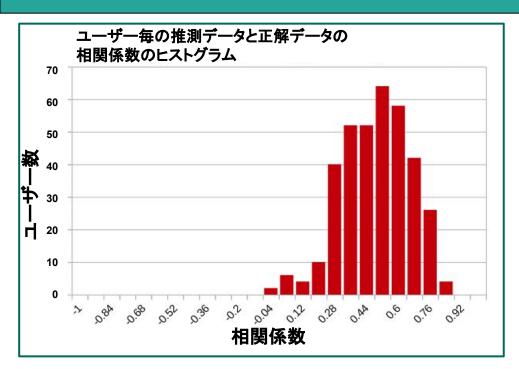
- □ グループは300曲以上楽曲が共通なユーザー
- 再生回数が10再生回数を超えると楽曲数が 極端に少なくなる



再生回数が1~15回の楽曲に対して正規化が大きく反映されている

式(2)

$$W(m_{(u_i,n)}) = ((\frac{1}{1+e^{-\beta \times F(m_{(u_i,n)})}}) - 0.5) \times 2$$



仮説2:類似する曲は 期待度も類似する

最も精度が良かった式(1)について 118グループ354ユーザー毎の正解データと 推測データの相関係数に対するヒストグラム

正の相関関係があるユーザーは346人 負の相関関係があるユーザーは8人

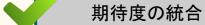
正の方法に相関関係があるといえる 仮説2について類似する曲は期待度も類似する傾向がある

音楽嗜好の推測

- □ 概要
- □関連研究
- □ グループ推薦の下準備
- □ グループ推薦
- □ 実験手法
- □ まとめ

推薦手法の検討とアプリケーションの開発を行った

未所持楽曲に対する 期待度の推測



楽曲リストの生成 楽曲の再生

- 1. 推薦手法について ユーザー期待度の統合は積で行っている 他の手法は未検討
- 2. **曲順を考慮したプレイリストの検討** 期待度の統合し値が大きい順に選曲している 曲の繋がりや、テンポ等を考慮も考慮すべき
- 3. **アプリケーションのユーザビリティ評価** アプリの操作性、使い易さについて検討すべき

推薦手法の検討とアプリケーションの開発を行った

所持楽曲に対する 期待度の推測

未所持楽曲に対する 期待度の推測

期待度の統合

楽曲リストの生成 楽曲の再生

- 1. 推薦手法について ユーザー期待度の統合は積で行っている 他の手法は未検討
- 2. 曲順を考慮したプレイリストの検討 期待度の統合し値が大きい順に選曲している 曲の繋がりや、テンポ等を考慮も考慮すべき
- 3. アプリケーションのユーザビリティ評価 アプリの操作性、使い易さについては未検討

推薦手法の検討とアプリケーションの開発を行った

所持楽曲に対する 期待度の推測

未所持楽曲に対する 期待度の推測

期待度の統合

楽曲リストの生成 楽曲の再生

- 1. 推薦手法について ユーザー期待度の統合は積で行っている 他の手法は未検討
- 2. **曲順を考慮したプレイリストの検討** 期待度の統合し値が大きい順に選曲している 曲の繋がりや、テンポ等を考慮も考慮すべき
- **3. アプリケーションのユーザビリティ評価** アプリの操作性、使い易さについては未検討

推薦手法の検討とアプリケーションの開発を行った

所持楽曲に対する 期待度の推測 未所持楽曲に対する 期待度の推測 期待度の統合 楽曲リストの生成 楽曲の再生

- 1. 推薦手法について ユーザー期待度の統合は積で行っている 他の手法は未検討
- 2. 曲順を考慮したプレイリストの検討 期待度の統合し値が大きい順に選曲している 曲の繋がりや、テンポ等を考慮も考慮すべき
- 3. **アプリケーションのユーザビリティ評価** アプリの操作性、使い易さについては未検討

まとめ

ユーザーの再生履歴と楽曲間類似度を用いて期待度の推測を行った

仮説1:「ユーザーの再生回数が多いと期待度が高い」

・再生回数に対して単調増加で評価率が増加 仮説1は正しい事が分かった

仮説2:「類似する曲は期待度も類似する」

・推測データと正解データに正の相関関係がある 仮説2についてはまだ完全の余地がある結果となった

修士業績一覧

2016年10月 Knowledge and Systems Engineering (IEEE-KSE 2016) 口頭発表

「A Bluetooth-Networked Music Player for Playing Musical Pieces Stored in Separate Devices」 鈴木 潤一, 北原 鉄朗(日本大学)

2016年6月 情報処理学会論文誌 エンタテインメントコンピューティング 特集 - テクニカルノート (日本語) 採録

「複数人が同一空間で音楽を聴くための選曲・再生システム」 鈴木 潤一, 北原 鉄朗(日本大学)

2016年3月 情報処理全国大会 口頭発表

「友人同士で好みの楽曲を聴かせ合うスマートフォン用ミュージックプレイヤー:楽曲推薦手法の一改善」 鈴木 潤一,北原 鉄朗(日本大学)

2015年10月 The International Society of Music Information Retrieval ポスター発表

「A Music Recommender for a Group of People」 鈴木 潤一, 末次 尚之, 北原 鉄朗(日本大学)

2015年9月 エンタテインメントコンピューティング2015 ポスター発表

「友人同士で好みの楽曲を聴かせ合うスマートフォン用ミュージックプレイヤー」 鈴木 潤一, 末次 尚之, 北原 鉄朗(日本大学)