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Abstract

The current capability of computers to recognize auditory events is severely limited when

compared to human ability. Although computers can accurately recognize sounds that

are sufficiently close to those trained in advance and that occur without other sounds

simultaneously, they break down whenever the inputs are degraded by competing sounds.

In this thesis, we address computational recognition of non-percussive musical instru-

ments in polyphonic music. Music is a good domain for computational recognition of

auditory events because multiple instruments are usually played simultaneously. The dif-

ficulty in handling music resides in the fact that signals (events to be recognized) and

noises (events to be ignored) are not uniquely defined. This is the main difference from

studies of speech recognition under noisy environments. Musical instrument recognition

is also important from an industrial standpoint. The recent development of digital audio

and network technologies has enabled us to handle a tremendous number of musical pieces

and therefore efficient music information retrieval (MIR) is required. Musical instrument

recognition will serve as one of the key technologies for sophisticated MIR because the

types of instruments played characterize musical pieces; some musical forms, in fact, are

based on instruments, for example “piano sonata” and “string quartet.”

Despite the importance of musical instrument recognition, studies have until recently

mainly dealt with monophonic sounds. Although the number of studies dealing with

polyphonic music has been increasing, their techniques have not yet achieved a sufficient

level to be applied to MIR or other real applications. We investigate musical instrument

recognition in two stages. At the first stage, we address instrument recognition for mono-

phonic sounds to develop basic technologies for handling musical instrument sounds. In

instrument recognition for monophonic sounds, we deal with two issues: (1) the pitch

dependency of timbre and (2) the input of non-registered instruments. Because musi-

cal instrument sounds have wide pitch ranges in contrast to other kinds of sounds, the

pitch dependency of timbre is an important issue. The second issue, that is, handling
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instruments that are not contained in training data, is also an inevitable problem. This is

because it is impossible in practice to build a thorough training data set due to a virtually

infinite number of instruments. At the second stage, we address instrument recognition in

polyphonic music. To deal with polyphonic music, we must solve the following two issues:

(3) the overlapping of simultaneously played notes and (4) the unreliability of prece-

dent note estimation process. When multiple instruments simultaneously play, partials

(harmonic components) of their sounds overlap and interfere. This makes the acoustic

features different from those of monophonic sounds. The overlapping of simultaneous

notes is therefore an essential problem for polyphonic music. In addition, note estima-

tion, that is, estimating the onset time and fundamental frequency (F0) of each note, is

usually used as a preprocess in a typical instrument recognition framework. It remains,

however, a challenging problem for polyphonic music.

In Chapter 3, we propose an F0-dependent multivariate normal distribution to resolve

the first issue. The F0-dependent multivariate normal distribution is an extension of a

multivariate normal distribution where the mean vector is defined as a function of F0.

The key idea behind this is to approximate variation of each acoustic feature from pitch

to pitch as a function of F0. This approximation makes it possible to separately model

the pitch and non-pitch dependencies of timbres. We also investigate acoustic features for

musical instrument recognition in this chapter. Experimental results with 6,247 solo tones

of 19 instruments showed improvement of the recognition rate from 75.73% to 79.73% on

average.

In Chapter 4, we solve the second issue by recognizing non-registered instruments at

the category level. When a given sound is registered, its instrument name, e.g. violin,

is recognized. Even if it is not registered, its category name, e.g. strings, can be recog-

nized. The important issue in achieving such recognition is to adopt a musical instrument

taxonomy that reflects acoustical similarity. We present a method for acquiring such a

taxonomy by applying hierarchical clustering to a large-scale musical instrument sound

database. Experimental results showed that around 77% of non-registered instrument

sounds, on average, were correctly recognized at the category level.

In Chapter 5, we tackle the third issue by weighting features based on how much they

are affected by overlapping; that is, we give lower weights to features affected more and

higher weights to features affected less. For this kind of weighting, we have to evaluate

the influence of the overlapping on each feature. It was, however, impossible in previous
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studies to evaluate the influence by analyzing training data because the training data were

only taken from monophonic sounds. Taking training data from polyphonic music (called

a mixed-sound template), we evaluate the influence as the ratio of the within-class variance

to the between-class variance in the distribution of the training data. We then generate

feature axes using a weighted mixture that minimizes the influence by means of linear

discriminant analysis. We also introduced musical context to avoid musically unnatural

errors (e.g., only one clarinet note within a sequence of flute notes). Experimental results

showed that the recognition rates obtained using the above were 84.1% for duo music,

77.6% for trio music, and 72.3% for quartet music.

In Chapter 6, we describe a new framework of musical instrument recognition to solve

the fourth issue. We formulate musical instrument recognition as the problem of calcu-

lating instrument existence probabilities at every point on the time-frequency plane. The

instrument existence probabilities are calculated by multiplying two kinds of probabili-

ties, one of which is calculated using the PreFEst and the other of which is calculated

using hidden Markov models. The instrument existence probabilities are visualized in the

spectrogram-like graphical representation called the instrogram. Because the calculation

is performed for each time and each frequency, not for each note, estimation of the on-

set time and F0 of each note is not necessary. We obtained promising results for both

synthesized music and recordings of real performances of classical and jazz music.

In Chapter 7, we describe an application of the instrogram analysis to similarity-based

MIR. Because most previous similarity-based MIR systems used low-level features such

as MFCCs, similarities for musical elements such as the melody, rhythm, harmony, and

instrumentation could not be separately measured. As the first step toward measuring

such music similarity, we develop a music similarity measure that reflects instrumentation

only based on the instrogram representation. We confirmed that the instrogram can be

applied to content-based MIR by developing a prototype system that searches for musical

pieces that have instrumentation similar to that specified by the user.

In Chapter 8, we discuss the major contributions of this study toward research fields

including computational auditory scene analysis, content-based MIR, and music visual-

ization. We also discuss remaining issues and future directions of research.

Finally, we present our conclusions of this work in Chapter 9.
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Chapter 1

Introduction

This chapter briefly describes the motivation, goal, issues, and approaches of this thesis.

1.1 Motivation

One of the major functions lacking in the current computing technology is recognition of

the real world. Humans use various information obtained from the real world through

their eyes and ears to judge situations and appropriate behavior in everyday life. Com-

puters’ capability to recognize auditory and visual scenes is, however, strictly limited.

In particular, there have been relatively few attempts to investigate sound recognition,

except speech recognition studies. Techniques for recognizing a variety of sounds, not

limited to speech, will be important to realize sophisticated computers that extensively

use the real-world information.

One major reason why it is difficult for computers to recognize auditory scenes is

that the auditory scenes in the real world usually contain multiple simultaneous sources

of sound. Because conventional speech recognition studies have assumed that the input

sounds to be recognized are voices spoken by a single speaker, they did not deal with

situations where multiple sources simultaneously present sound. Although there have

been a number of attempts to recognize speech under noisy environments, the number of

the source to be recognized is always one; the other sound sources are regarded as noise.

Music is a good domain for studying computational recognition of auditory scenes

because multiple instruments are usually played simultaneously. The difficulty in handling

music resides in the fact that signals (sources to be recognized) and noises (sources to

be ignored) are not uniquely defined. Therefore, multiple simultaneous sources should be

modeled and recognized in parallel. This is the main difference from studies on speech
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recognition under noisy environments.

Music recognition has a long history. After the fast Fourier transform was invented

by Cooley and Tukey in the 1960s [1], attempts to apply fundamental frequency (F0)

estimation techniques to musical audio signals were started. Because F0 estimation is di-

rectly connected to automatic music transcription, which aims at automatically obtaining

a musical score representation from musical audio signals, it has been the main subject

in music recognition research. Until the 1980s, however, the signals to be used were solo

(monophonic) sounds [2]. Recently, since the 1990s, the targets of F0 estimation have been

polyphonic music [3–19] (see Section 2.1.1 for details). On the other hand, recognition of

other aspects of music, e.g., instrument recognition, have not been studied as extensively

as F0 estimation. In fact, until recently the main targets of most previous studies of

instrument recognition were solo sounds [20–36], although the number of studies dealing

with polyphonic music has been increasing in recent years [37–42].

Music recognition is also significant from an industrial viewpoint. The recent devel-

opment of digital audio and network technologies has enabled us to handle a tremendous

number of musical pieces. The newest portable music players can store over 20,000 pieces

and allow us to choose favorite pieces from a huge collection and to listen to them any-

where. In addition, recent digital music distribution services have given us nearly unlim-

ited access to music. Despite such developments, technologies for helping users find the

musical pieces they want are not sufficient. To develop such technologies, music recogni-

tion, that is, extraction of musically meaningful information from musical audio signals,

will play an important role.

1.2 Goals and Issues

In the light of the circumstances described above, we deal with recognition of non-

percussive musical instruments in polyphonic music. Information on the instruments

played in the audio signal is expected to have an important role because it characterizes

musical pieces. In fact, the names of some musical forms are based on instrument names,

such as “piano sonata” and “string quartet.” When a user, therefore, wants to search

for certain types of musical pieces, such as a piano sonata or string quartet, a retrieval

system can use information on musical instruments. This information can also be used

for jumping to the point when a certain instrument begins playing.
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1.2 Goals and Issues

In this thesis, we investigate musical instrument recognition in two stages. At the

first stage, we address instrument recognition of monophonic sounds in order to develop

basic technologies for handling musical instrument sounds. In instrument recognition for

monophonic sounds, we deal with the following two issues:

[Issue 1] Pitch dependency of timbre

In contrast to other sound sources including human voices, musical instruments have

wide pitch ranges. For example, the pitch range of the piano covers more than seven

octaves. Such a wide pitch range makes timbres quite different from pitch to pitch.

This is a factor that makes musical instrument recognition difficult.

[Issue 2] Input of non-registered instruments

Although most existing studies on musical instrument recognition have used training

data containing a limited number of musical instruments and have assumed that all

input instruments were contained in the training data, this assumption is not always

satisfied. Because there are numerous kinds of musical instruments in the world, it

is practically impossible to prepare training data that cover all of them. In addition,

the recent development of digital audio technology has made it possible to create

novel and infinite kinds of original musical sounds (from sounds similar to natural

instruments to sounds of instruments that do not actually exist). It is therefore

essential to deal with non-registered musical instruments when recognizing musical

instrument sounds.

At the second stage, we scale up the target of musical instrument recognition from mono-

phonic sounds to polyphonic sounds. To deal with polyphonic music, we must solve the

following two issues:

[Issue 3] Overlapping of simultaneously played notes

The difficulty of dealing with polyphonic music lies in the fact that it is impossible

to extract the acoustical features of each instrument without blurring because of the

overlapping of partials (harmonic components). If a clear sound for each instrument

could be obtained with sound separation technology, the recognition of instruments

in polyphonic music might become equivalent to the recognition of monophonic

sounds. In practice, however, it is very difficult to separate a mixture of sounds

without distortion.
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[Issue 4] Unreliability of the precedent note estimation process

In the conventional musical instrument recognition framework, the instrument that

plays each note is identified (notewise processing). The onset time and F0 of each

note must therefore be accurately estimated before the identification phase. How-

ever, these estimations are generally not easy to make in polyphonic music, and thus

estimation errors severely deteriorate the recognition performance. A new frame-

work that can avoid the influence of these unreliable preprocesses is required in

order to achieve instrument recognition in polyphonic music.

1.3 Overview of Our Approaches

We tackle the above-mentioned issues through the following approaches:

[Solution 1] F0-dependent Timbre Modeling

We propose a pitch-dependent model of timbres, which we term F0-dependent mul-

tivariate normal distribution. The F0-dependent multivariate normal distribution

has two parameters: F0-dependent mean function and F0-normalized covariance.

The F0-dependent mean function is defined as a function of F0, which represents

the pitch dependency of each feature, while the F0-normalized covariance represents

the non-pitch dependency. This modeling approximates the phenomenon in which

tone features at different pitches have different positions (means) of distributions in

the feature space even for the same instrument.

[Solution 2] Category-level Recognition of Non-registered Musical Instruments

We solve the non-registered instrument problem by recognizing such instruments at

the category level. For example, a musical instrument sound that is similar to a

violin and a viola but is not the same (for example, a sound made from the two

instruments using a synthesizer) is recognized as “strings.” Humans listening to this

sound for the first time, would think, “I do not know this instrument, but it must

be a kind of strings.” This solution aims to achieve such human-like recognition on

a computer.

[Solution 3] Feature Weighting based on Mixed-sound Template

We approach the overlap problem by weighting each feature based on how much

the feature is affected by the overlapping. If we can give higher weights to features
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1.4 Thesis Organization

1. Introduction

2. Literature Review

3. F0-dependent Timbre Modeling

4. Category-level Identification of
Non-registered Instruments

5. Feature Weighting based on 
Mixed-sound Template

6. Note-estimation-free Musical 
Instrument Recognition

8. Discussion 9. Conclusions

7. Applications

Figure 1.1: Organization of this thesis.

suffering less from this problem and lower weights to features suffering more, it

will facilitate robust instrument recognition in polyphonic music. We achieve this

feature weighting by using a mixed-sound template (i.e., a set of instrument-labeled

feature vectors extracted from polyphonic signals) and linear discriminant analysis.

[Solution 4] Note-estimation-free Musical Instrument Recognition

We propose a new framework for musical instrument recognition that does not use

either onset detection nor F0 estimation of each note as the explicit preprocess.

The key concept underlying this is to visualize the probability that the sound of

each target instrument exists at each time and each F0 (called instrument exis-

tence probability (IEP)) as a spectrogram-like representation called an instrogram.

The instrument existence probability is defined as the product of two probabilities:

the nonspecific instrument existence probability and the conditional instrument ex-

istence probability. Because calculation of the former implicitly includes the onset

detection and F0 estimation, our technique can avoid their explicit processing. In

addition, because the two probabilities can be calculated independently, errors due

to the calculation of one probability do not influence the calculation of the other

probability.

1.4 Thesis Organization

The organization of this thesis is shown in Figure 1.1.

Chapter 2 provides a review of the literature in related fields and discusses the posi-

tioning of this thesis.
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Chapter 3 describes the F0-dependent multivariate normal distribution, which is our

solution to the problem of the pitch dependency of timbres. After we formulate the F0-

dependent multivariate normal distribution, we describe the acoustic features we use for

instrument recognition, comparing them with those of previous studies. We then report

experimental results with an isolated solo musical instrument sound database that consists

of 6,247 sounds of 19 instruments. We discuss the effectiveness of our approach comparing

it with the usual (F0-independent) multivariate normal distribution. We also compare

our approach with the k-NN classifier and the approach of appending F0 to the feature

vector.

Chapter 4 describes category-level recognition of non-registered instruments. Because

the category-level recognition requires a taxonomy of musical instruments, we first discuss

a musical instrument taxonomy that is appropriate for category-level recognition. Specif-

ically, we point out that the musical instrument taxonomy for category-level recognition

should reflect similarity of timbres (acoustic features) and build a musical instrument tax-

onomy automatically based on acoustic similarity. This taxonomy is called TimbreTree.

We then describe a method for category-level recognition and report experimental results

of recognizing electric instruments with a recognizer that has been trained for only natural

instruments.

Chapter 5 provides our solution to the overlapping problem in instrument recognition

in polyphonic music based on feature weighting using the mixed-sound template. The

key idea behind this is to extract training data from audio signals of polyphonic music.

To perform the feature weighting, we have to extract training data from audio signals

of polyphonic music. We therefore discuss extracting training data from polyphonic mu-

sic signals after explaining the basic framework of instrument recognition in polyphonic

music. The main issue in this is to design an appropriate subset of polyphonic sound mix-

ture because there are an infinite number of possible combinations of musical sounds. We

provide a simple solution to this and confirm its effect through experiments with synthe-

sized audio signals of duo, trio, and quartet music. We also introduce musical context to

avoid musically unnatural errors (only one clarinet note within a sequence of flute notes).

We report that the use of musical context effectively improves instrument recognition in

polyphonic music as long as the given musical pieces have rare crosses in pitch among

simultaneous parts.

Chapter 6 proposes the note-estimation-free instrument recognition framework called
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the instrogram analysis. First, we propose a probabilistic representation of instrumenta-

tion called an instrogram. The instrogram is a graphical visualization of IEPs calculated

for every time and every F0. We then formulate the IEP and describe the algorithm of

calculating the IEP. The effectiveness of the instrogram analysis is tested on recordings

of both synthesized music and real performances.

Chapter 7 presents an application of the instrogram analysis to similarity-based MIR.

Because the instrogram representation is directly connected to instrumentation, it can

provide a new music similarity measure that reflects instrumentation. Because instrumen-

tation is an important factor determining the impression of music, the instrogram-based

music similarity measure will play an important role when we design a music similarity

measure where various musical elements are separately handled and their weights can be

determined adaptively to the users’ preference.

Chapter 8 discusses major contributions of this study to different research fields includ-

ing computational auditory scene analysis, content-based MIR, and music visualization.

Remaining issues and future directions are also discussed.

Finally, Chapter 9 concludes the thesis.
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Chapter 2

Literature Review

This chapter provides a review of the literature related to musical instrument recognition

and content-based music information retrieval to clarify the positioning of this thesis

within related fields.

2.1 Musical Instrument Recognition

In this section, we provide reviews of studies on several related fields to musical instru-

ment recognition to make it possible to discuss the positioning of our musical instrument

recognition study from different perspectives.

2.1.1 Musical Audio Signal Processing

Research on musical audio signal processing has a long history. In the 1970s, studies

of F0 estimation for solo musical audio signals were started; music was a new target

domain of signal processing techniques that were originally developed for speech analysis.

Moorer [2] then built a system for transcribing duets. This system, however, was limited,

succeeding only with music featuring two instruments of different timbres and frequency

ranges, and with strict limitations on the allowable simultaneous musical intervals in the

performances. In 1989, Katayose and Inokuchi [43] dealt with the problem of obtaining

traditional scores from audio signals of multiple simultaneous-note performances played on

a single instrument by combining signal processing and knowledge processing. Martin [3]

and other researchers also dealt with similar problems. A new research field, automatic

music transcription, was thus established.
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Automatic Music Transcription

The music transcription system developed by Katayose and Inokuchi [43] interprets the

time-frequency representation of a given audio signal by integrating some rule-based pro-

cessing modules. The audio signal is first transformed to a set of note symbols, consisting

of the pitches and the onset and offset times, where the onset and pitch are estimated

based on data, stored in advance, of the attack time and the relative powers of partials

of the target instrument. The note symbols are then organized as a musical score based

on some knowledge of musical structure.

Martin [3] proposed a system for transcribing piano performances of four-voice Bach

chorales using the blackboard framework. In this system, the blackboard workspace is

arranged in a hierarchy consisting of a log-lag correlogram input (at the lowest level),

peaks, periodicities, envelope, onsets, and notes (at the highest level). Several knowledge

sources are used to make hypotheses at each level from lower-level information, and the

other knowledge source is used to prune away obviously incorrect note hypotheses.

Klapuri et al. [4] developed a music transcription system using their onset detec-

tion [44], multiple F0 estimation [5], and harmonic sound separation [45] methods. Their

F0 estimation method was based on the iterative processing of estimating the predominant

F0 and removing its partials.

Marolt [6] proposed a system for transcribing piano music based on a connectionist

approach. The system consists of two main parts: a partial tracking module, which

calculates a time-frequency representation of an input audio signal, and a note recognition

module, which groups the found partials into notes. In the note recognition module,

time-delay neural networks are trained. Specifically, each network is trained to recognize

a certain piano note in its input. The input to networks consists of the output of all

the oscillator networks in a few recent time frames and of the amplitude envelopes at the

outputs of the auditory feedback. Supervised learning with a large amount of piano music

is used to train the neural networks.

Music Scene Analysis

Kashino et al. [46] proposed an architecture, called OPTIMA, for music transcription

based on the Bayesian network. They introduced the hierarchical structure of partials

(frequency components), notes, and chords, and probabilistically modeled their relation-

ships. Their system determines the most likely interpretation using both bottom-up and
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top-down clues. They used the term music scene analysis, which will be mentioned again

later, in place of automatic music transcription because their work was motivated by com-

putational auditory scene analysis [47]. Unlike most of the above-mentioned studies, they

dealt with polyphonic music played on multiple instruments and the grouping of notes

according to instrument.

Parametric Modeling of Multiple Instrument Sounds

In the late 1990s, the trend of F0 estimation moved from rule-based techniques to para-

metric modeling. This approach basically designs a parametric model that approximates

power spectra containing multiple instrument sounds and searches for the model param-

eter where the model best fits the given spectra.

Goto [7] proposed a new method for modeling power spectra containing multiple in-

strument sounds. His PreFEst method models an observed power spectrum as a weighted

mixture of tone models p(x|F ) of every possible F0 F . The tone model p(x|F ), where x is

the log frequency, represents a typical spectrum of harmonic structures, and the mixture

density p(x; θ(t)) is defined as

p(x; θ(t)) =
∫ Fh

Fl
w(t)(F )p(x|F )dF,

θ(t) = {w(t)(F ) | Fl ≤ F ≤ Fh},

where Fl and Fh denote the lower and upper limits, respectively, of the possible F0

range, and w(t) is the weight of a tone model p(x|F ) that satisfies
∫ Fh
Fl w(t)(F )dF = 1. If

we can estimate the model parameter θ(t) such that the observed spectrum is likely to

have been generated from p(x; θ(t)), the spectrum can be considered to be decomposed

into harmonic-structure tone models. The model parameter can be estimated using the

Expectation-Maximization (EM) algorithm.

Kameoka et al. [8] also proposed a new method for multiple F0 estimation based on

model parameter estimation using the EM algorithm. They modeled each spectral peak

as a Gaussian model and a set of spectral peaks from a single note (a harmonic structure)

as a Gaussian mixture model (GMM) where the means of the Gaussians corresponding to

overtones are constrained to be integer multiples of that corresponding to the fundamental

in the linear frequency scale. The model parameter set θ for a power spectrum containing

K harmonic structures is therefore represented as

θ = {μk, wk, σ | k = 1, · · · , K},
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μk = {μk, · · · , μk + log n, · · · , μk + log Nk},

wk = {wk
1 , · · · , wk

n, · · · , wk
Nk
},

where μk is F0 of k-th harmonic structure in the log-frequency scale and wk
n and σ are

weights and variance (that is assumed here as a constant) of the respective Gaussian dis-

tributions. These model parameters are estimated using the EM algorithm. They named

this method harmonic clustering (HC). They also introduced the Akaike Information Cri-

terion (AIC) to determine the number of GMMs (in other words, to estimate the number

of harmonic structures).

They subsequently extended HC to represent temporal features in an audio stream [9].

Let p(x, t|Θk) be the temporal stream of the k-th harmonic structure. This can then

be represented as the product of the harmonic structure model hk(x) and the envelope

function gk(t) as follows:

p(x, t|Θk) = wkgk(t)hk(x),

where the weight wk corresponds to the power of the k-th harmonic structure. The key

point of this method is the formulation of the spectrogram of a harmonic structure as

the multiplication of two different functions, one of which models the spectral aspect and

the other of which models the temporal aspect. The harmonic structure hk(x) is modeled

with a weighted sum of Gaussian kernels given by

hk(x) =
∑
n

rk
n√

2πσ2
k

exp

[
−{x − (μk + log n)}2

2σ2
k

]
,

where rk
n is related to the spectral components. This model is basically the same as that

used in HC. The power envelope gk(t) is modeled as

gk(t) =
∑
y

ck
y√

2πφ2
k

exp

[
−{t − (ok + yφk)}2

2φ2
k

]

where ck
y is the weights that directly determine the shape of the power envelope and ok

is the center of forefront Gaussian. By setting the standard deviation of each Gaussian

and the interval of adjacent Gaussians to the same variance φk, the power envelope gk(t)

becomes a linear elastic function allowing various time lengths of audio streams. This

method is called harmonic-temporal-structured clustering (HTC).

Sagayama et al. [10] proposed a new method for spectral analysis termed specmurt.

The specmurt uses the property whereby the positions of the spectral peaks of overtones
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shift in parallel to F0 fluctuation in the log-frequency scale. Assuming that all sounds in a

given signal have a common harmonic structure, denoted as h(x), which does not depend

on the F0, they modeled the power spectrum v(x) as the convolution of the F0 distribution

u(x) and the common harmonic structure h(x), that is, v(x) = h(x)∗u(x), where x is the

log frequency. The F0 distribution u(x) lets us know the power of the harmonic structure

with the F0 of x for every frequency x. Given an appropriate harmonic structure model

h(x), the F0 distribution can be calculated as U(y) = V (y)/H(y) where U(y), H(y), and

V (y) are the Fourier transform of u(x), h(x), and v(x), respectively. They subsequently

proposed a method for estimating the quasi-optimal common harmonic structure model

with an iterative calculation because the accuracy of the F0 distribution greatly depends

on the common harmonic structure [11].

Otherwise, many researchers have proposed different approaches to tackle the mul-

tiple F0 estimation problem, for example, approaches based on non-negative matrix

factorization [12], non-negative sparse coding [13], generative models [14, 15], instrument

models [48], and Bayesian estimation with frequency domain modeling [16]. Vincent and

Rodet’s method based on independent subspace analysis [42], which will be described

later, is also a multiple F0 estimation method based on parametric modeling of spectra.

Detailed reviews can be found in [17–19].

Musical Instrument Recognition for Solo Sounds

As can be seen from the above review, the main subjects in the field of musical audio

signal processing to date have been F0 estimation and its application to automatic music

transcription. In fact, almost none of the above-mentioned studies (except OPTIMA)

have dealt with musical instrument recognition. In the late 1990s, however, attempts on

musical instrument recognition for solo sounds were started.

Most studies on instrument recognition for solo sounds [20, 23, 25–27, 29–31, 33, 36]

dealt comparatively with many kinds of instruments (between 10 and 30). Various

acoustic features were used; some were designed based on the knowledge of musical

acoustics (e.g., spectral centroid and odd/even energy ratio) [20, 23, 32, 33, 35] and some

were used in speech recognition (e.g., MFCCs and LPCs) [21, 22, 28, 30, 31]. Some stud-

ies adopted dimensionality reduction or feature selection techniques to avoid the redun-

dancy of high-dimensional feature spaces [20, 24–27, 29, 32, 35]. The commonly used clas-

sifiers were the Gaussian [23, 29], GMM[21, 22, 28, 31, 32], k-NN [23–27, 29, 31, 33, 35, 36],
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and SVM (support vector machine) [28, 32, 33] classifiers. While almost all of the recent

speech recognition studies have employed hidden Markov models (HMMs), they were used

by only a few studies on musical instrument recognition [30]. Some introduced hierarchical

schemes [20, 23]. A number of studies achieved the recognition rates of 70–80% for more

than 10 target instruments [20, 23, 31, 33] and some achieved about 90% [29, 36]; however,

these studies cannot be directly compared because different data and different evaluation

methods were used.

Martin [20] reported the results of large-scale experiments on musical instrument recog-

nition. He proposed a hierarchical method for musical instrument recognition where the

taxonomy of instruments was manually designed based on knowledge on the sounding

mechanisms of instruments. He used a variety of acoustic features including spectral fea-

tures (such as the spectral centroid and average relative spectrum), modulation features

(such as the tremolo, centroid modulation, and individual harmonic amplitude modula-

tion), and attack features (such as the relative onset time). This was a pioneering study

that investigated the effectiveness of various acoustic features against musical instrument

recognition through experiments using a large-scale database of monophonic sounds of

actual instruments (1,023 sounds of 14 instruments). He also investigated human ability

to recognize musical instruments.

Brown [21] dealt with recognition of oboe and saxophone sounds. She used cepstral

coefficients as acoustic features because these instruments can be modeled as a resonator

with a periodic excitation similar to that of human voice. She subsequently investigated

acoustic features useful for recognizing woodwind instrument sounds because these in-

struments were difficult to distinguish from each other due to similar attacks, decays,

pitch ranges, and modes of excitation [22]. She used frequency-domain features (such as

cepstral coefficients, constant-Q coefficients and their bin-to-bin differences, and spectral

centroid) and time-domain features (such as autocorrelation coefficients, moments of the

residual of the LPC (linear prediction coefficients) filtered signal, the third (skew), fourth

(kurtosis), and fifth moments of the raw signal, and the second through fifth moments

of the envelope of the signal). She investigated the importance of each feature through

testing the differences in the recognition accuracies with different feature sets.

Eronen and Klapuri [23] dealt with large-scale musical instrument recognition with

the hierarchical approach using a variety of acoustic features similarly to Martin. They

combined cepstral coefficients used by Brown and temporal features like those used by
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Martin. Their experimental results from a dataset consisting of 1,498 monophonic sounds

of 30 instruments showed the recognition rates of approximately 80% at the individual-

instrument level and 94% at the category (instrument family) level.

Fujinaga [24, 25] developed an exemplar-based musical instrument recognition system,

which is based on the k-nearest neighbor (k-NN) classifier. He introduced feature selec-

tion and feature weighting based on the genetic algorithm (GA) to improve recognition.

For feature selection, the set of features is converted to “genes”, where each feature is

represented by a bit in the binary array. Each gene having a different sequence of bits

then represents a subset of features to be used for classification and those having high

recognition rates are made to survive in the pseudo-biological environment. The GA is

used again to weight features after performing feature selection. His experimental results

from a database consisting of 1,338 different sounds of 39 different timbres from 23 instru-

ments showed that the recognition rate was approximately 50% when seven features were

selected, while the best recognition rate for a single feature was 20%, where the selected

feature was the centroid. He and his colleague subsequently re-implemented this method

as a real-time recognition system based on Puckette’s fiddle program [49], which is robust

real-time F0 estimation software [26, 27].

Marques and Moreno [28] also dealt with recognition of musical instruments for short

excerpts of audio signals of solo music. They first divided a given audio signal into

segments 0.2 seconds in length. They then extracted three different features sets, lin-

ear prediction coefficients (LPC), FFT-based cepstral coefficients, and FFT-based mel

cepstral coefficients, from each segment. Next they explored two different classification

algorithms, the GMM and SVM. The relationship between the recognition rates and the

choices of the feature sets and classification algorithms were investigated in detail.

Livshin et al. [29] dealt with musical instrument recognition for monophonic musical

instrument sounds. They used the acoustic features proposed by Peeters and Rodet [50]

and three different classifiers (Gaussian, learning vector quantization (LVQ), and k-NN)

with linear discriminant analysis (LDA). They showed the recognition rate of more than

95% with leave-one-out (LOO) cross validation for 16 instruments. They also investigated

the importance of each feature by comparing recognition rates with feature spaces in which

some features were eliminated. Furthermore, they showed that the recognition rates with

different databases for training and test sets were significantly lower than those with the

same database.
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Eronen [30] attempted musical instrument recognition using left-to-right HMMs. Given

an audio signal, MFCCs and delta MFCCs were extracted every 15ms. The feature space

was then transformed by using independent component analysis (ICA). Next, left-to-right

HMMs, which are commonly used in speech recognition studies, were trained or used to

recognize the instrument through well-known techniques such as the Baum-Welch and

Viterbi algorithms.

Krishna and Sreenivas [31] tried to recognize musical instruments for solo music record-

ings using only frame-level features in order to omit the process of onset detection, which

is not easy in phrase performances. They extracted the spectral features termed line

spectral frequencies, which can be obtained with LPC analysis, from every short segment.

They then determined the instrument based on the average likelihood of GMMs for all

of the frames. They also attempted to use the k-NN classifier instead of GMMs, and

claimed that they achieved good performances despite the use of simple features (i.e., no

temporal features were used).

Essid et al. [32] dealt with monophonic musical instrument recognition using pairwise

classification strategies. They extracted more than 150 acoustic features and reduced the

dimensionality of this large-dimensionality feature space using two different methods of

feature selection: genetic algorithms (GAFS) and inertia ratio maximization using feature

space projection (IRMFSP). In the former, the approximately optimal lower-dimensional

feature space is searched randomly under the guidance of the fitness function given by

F (C) =
||μ1 − μ2||2√

(|Σ1| + |Σ2|) /2
,

where μi and Σi (i = 1, 2) are the mean vectors and the diagonal covariance matrices

of the multivariate Gaussian distributions for the two target classes, respectively. In the

latter, feature selection is made iteratively with the aim of deriving an optimal subset of d

features among D, the total number of features. At each step i, a subset X i of i features

is built by appending an additional feature to the previously selected subset X i−1. The

feature that should be appended is selected based on the following:

ri =

K∑
k=1

Nk

N
||mi,k − mi||

K∑
k=1

⎛
⎝ 1

Nk

Nk∑
nk=1

||xi,nk
− mi,k||

⎞
⎠

,

where xi,nk
is nk-th feature space (i-dimensional) from the class k, mi,k and mi are
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respectively the means of the vectors of the class k and all classes, K is the number of

classes, and Nk and N are respectively the numbers of the vectors of the class k and

all classes. This criterion is known as the Fisher discriminant. This algorithm is also

performed pairwise. As classification methods, GMMs, pairwise coupling [51], and SVMs

were tried.

Using different approaches, a number of other researchers have tried musical instru-

ment recognition for monophonic sounds in recent years [33–36]. Good reviews on recent

musical instrument recognition studies are available, for example, in [52, 53].

Musical Instrument Recognition for Polyphonic Music

Although the targets of musical instrument recognition studies have been monophonic

sounds until just recently, the number of studies now dealing with polyphonic music is

increasing.

The first main difficulty in instrument recognition in polyphonic music (a mixture

of multiple instrument sounds) lies in the fact that the sounds contained in the mix-

ture interfere with each other, and this interference makes it difficult to extract acoustic

features from the sounds exactly and robustly. If a clean sound for each instrument

could be obtained using sound separation technology, instrument recognition for poly-

phonic music would become equivalent to the recognition of the monophonic sound of

each instrument. In practice, however, a mixture of sounds is difficult to separate with-

out experiencing distortion. When some partials (harmonic components) of some sounds

in the mixture overlap in frequency, the separation is very difficult and therefore the

acoustic features extracted from the mixture are quite different from those extracted from

monophonic sounds. Recently, different researcher groups have tackled this overlapping

problem through different approaches.

Kashino and Murase [37] proposed an architecture for sound source identification,

called Ipanema, based on a multi-agent scheme. An agent is prepared for each target

instrument, and each agent tries to detect the sound of the target instrument, and re-

gards the sounds of the other instruments as noise. Each agent maintains a bank of

waveforms, each of which is a waveform of a single note of a specific pitch and expression.

Each agent examines the input F0 and checks whether the F0 is within the pitch range

of the instrument corresponding to the agent. And, if there are a possibility of being

included, the agent suggests a waveform, applying a phase tracking method to one of the
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waveforms stored in the bank. The agents that suggested waveforms then modify (adapt)

them to minimize the squared error of the suggested waveforms. Let z(k) and rn(k) be the

input signal and the waveform of n-th source, respectively, where k represents time. The

modification of the waveforms, called template adaptation, is formulated as estimation of

FIR filters hn(m) that minimize the following equation:

J = E

⎡
⎣{z(k) −

∑
n

(hn(m) ∗ rn(k))

}2
⎤
⎦ ,

where E[·] is the temporal average and ∗ denotes convolution. This was a pioneering study

dealing with polyphonic music and its importance lay in that they formulated instrument

recognition as the matching of waveforms instead of feature vectors, which were difficult

to extract robustly. In addition, they introduced music stream networks, which model

sequences of melodies, to take musical context into account.

Kinoshita et al. [38] tackled the overlapping problem using a different approach. They

manually categorized the acoustic features for recognition into three types (additive, pref-

erential, and fragile) according to how the features varied when partials overlapped. When

partials of multiple sounds overlap, the additive features extracted from the partials tend

to become close to the sum of the partials in the monophonic case. The preferential

features tend to become close to the maximum or minimum of the partials in the mono-

phonic case and the fragile features tend to become meaningless values. According to this

categorization, the features are recalculated or invalidated when overlapping partials are

observed.

Eggink and Brown [39, 40] introduced the missing feature approach to tackle the over-

lapping problem. This is a technique for canceling unreliable features using a vector called

a mask, which represents whether each feature is reliable or not. Although this technique

is known to be effective if the features to be masked are correctly estimated, automatic

mask estimation is difficult and still an unsolved problem. They tried two kinds of masks:

the a priori mask and the pitch-based mask. The a priori mask is generated by comparing

the observed signal and the clean (unmixed) signal, which is impossible to obtain in real-

istic situations. This mask is therefore not applicable to realistic situations and is useful

only for investigating the upperbound of the missing feature approach. Once the F0s

of overlapping sounds are estimated, the partials that are possible to overlap with each

other can be determined. If a partial from the target sound overlap with partials from

any non-target sounds, in the pitch-based mask, the features derived from this partial are
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masked. A limitation in the missing feature approach lies in the requirement of locally

spectral features, because the features used for recognition should clearly correspond to

specific frequency regions, as the main idea is to exclude specific frequency regions.

The second major difficulty in instrument recognition in polyphonic music is that the

preprocesses of recognition (e.g., onset detection and F0 estimation) are not sufficiently

reliable for polyphonic music. In the frameworks of Kashino and Murase [37] and Ki-

noshita et al. [38], instrument recognition was performed for each note. They needed to

estimate the onset time and F0 of each note to extract the segment corresponding to the

note before identifying the instrument for the note. Onset detection and F0 estimation for

polyphonic music are, however, still challenging problems and their errors can adversely

affect instrument recognition. Eggink and Brown’s framework [39, 40] does not need to

estimate the onset time of each note because it identifies the instruments for each frame.

It does, however, need F0 estimation for each frame to generate pitch-based masks. This

is why most of the above-mentioned studies [37, 40] gave their systems correct onset times

and/or F0s in the experiments. Kinoshita et al. [38] reported that, given random note

patterns taken from three different instruments, instrument recognition performance was

around 72–81% for correct F0s but decreased to around 66–75% for estimated F0s. Vin-

cent and Rodet [42] and Essid et al. [32] proposed new instrument recognition techniques

that can avoid this difficulty.

Vincent and Rodet [42] formulated both music transcription (onset detection and F0

estimation) and instrument recognition as a single optimization problem. Let (xt) be

the short-time log-power spectra of a given musical excerpt containing n instruments.

Denoting mjt the power spectrum of instrument j at time t and Φ′
jht the log-power

spectrum of note h from instrument j at time t, they assume:

xt = log

⎡
⎣ n∑

j=1

mjt + n

⎤
⎦+ εt

mjt =
Hj∑
h=

exp(Φ′
jht) exp(ejht),

Φ′
jht = Φjh +

K∑
k=1

vk
jhtU

k
jh,

where exp(·) and log(·) are the exponential and logarithm functions applied to each co-

ordinate. The vector Φjh is the unit-power mean log-power spectrum of note h from

instrument j and (Uk
jh) are L2-normalized “variation spectra” that model variations of
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the spectrum of this note around Φjh. The scalar ejht is the log-power of note h from

instrument j at time t and (vk
jht) are “variation scalars” associated with the “variation

spectra.” The vector n is the power spectrum of the stationary background noise. The

modeling error vector εt is assumed to be a white Gaussian noise. The log-power ejht

is considered to be determined based on a hidden discrete state Ejht ∈ {0, 1} denoting

absence or presence; it is constrained to −∞ given Ejht = 0 and it follows a Gaussian law

given Ejht = 1. The instrument model Mj , for each instrument j, is defined as the col-

lection of the fixed parameters describing instrument specific properties, for example Φjh

and (Uk
jh), and is trained in advance. Then, maximizing Ptrans = P (O, (Ejht), (pjht)|(xt)),

where O is a list of instrument models, with pjht = (ejht, v
1
jht, · · · , vK

jht) means finding

the best (Ejht) and O explaining (xt), which approximate music transcription and instru-

ment recognition, respectively. Both music transcription and instrument recognition is

thus achieved as a single optimization process.

Essid et al. [41] tackled the problem of the unreliability of preprocessing using a com-

pletely different approach. They introduced a multi-instrument recognition scheme pro-

cessing real-world music that did not require F0 estimation or separation steps. Their

approach exploits a taxonomy of musical ensembles to represent every possible combi-

nation of instruments likely to be played simultaneously in relation to a given musical

genre.

Different from Essid et al.’s study [32], other research [37–40, 42] dealt with duo or

trio music played on instruments chosen from 3–5 instrument candidates and achieved

recognition rates of approximately 50 to 88%. They did not deal with music containing

vocal or percussive sounds.

2.1.2 Computational Auditory Scene Analysis

Computational auditory scene analysis (CASA) [47] is the research field aiming at imple-

mentation of human auditory functions on a computer. Humans can hear various auditory

events that often occur simultaneously and can understand the events seamlessly regard-

lessly of whether these are human voices, music or other sounds. They can also focus their

listening attention on a single talker among a mixture of conversations and background

noises, ignoring other conversations, in a very noisy environment (the cocktail party ef-

fect). A framework to represent such flexible auditory functions, known as auditory scene

analysis (ASA), has been proposed by Bregman [54] and has been investigated in detail
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from a psychoacoustical viewpoint. Attempts at strictly formulating and implementing

auditory scene analysis from an engineering standpoint have been started in the field of

artificial intelligence. This work was inspired by Marr’s work on vision [55].

Bregman discussed the framework of ASA from the viewpoint of two kinds of group-

ing [54]. The first is simultaneous grouping, which groups frequency components orig-

inating from the same auditory event spread along the frequency axis. The second is

sequential grouping, which groups temporally sequential auditory events originating from

the same sound source (the sequence of the grouped events is called a stream). Bregman

pointed out the phenomenon in which a sequence of alternate auditory events originating

from two different sources (i.e., A-B-A-B-...) is perceptually segregated into two streams,

and called this phenomenon auditory streaming. He investigated various acoustic cues

causing auditory streaming through various experiments, for example, proximity of the

frequencies, rate of the sequence, and similarity of the timbres.

There are two main features of the work in this field. The first is a unified frame-

work of speech and non-speech understanding, which is in contrast to conventional speech

recognition research which aims to recognize only speech (non-speech sounds are always

noise). The second is that the inputs are mixtures of multiple auditory events. The CASA

can be formulated as the problem of inputting a set of auditory events and outputting

a description of each event. This formulation has a close affinity with music recogni-

tion because music usually contains multiple auditory events and some representations

of auditory events in music have been established, such as traditional scores. In fact,

Kashino et al. [37, 46] dealt with music as an example target domain in their CASA re-

search. The concept of the two groupings proposed by Bregman [54] can be applied to

music transcription with no modification.

2.1.3 Recognition of Other Sounds

The most popular research field on recognition of non-musical sounds is speech recognition

(including spoken content and speakers) [56, 57]. The recent development of large-scale

speech corpora and statistic pattern recognition approaches has made speech recognition

sufficiently accurate as long as the given signal is clearly spoken (i.e., like the speech of

professional announcers) and does not contain noise. The recognition is, however, very

difficult when the signals include noise, in particular, when multiple people speak simulta-

neously. The major approach for dealing with such situations is sound source separation

21



Chapter 2 Literature Review

with many (typically more than two) microphones. If the number of microphones is equal

to or greater than the number of sound sources, separation of the sources is possible, for

example, using independent component analysis (ICA) [58, 59]. Studies of the separation

of multiple sources and recognition of the separated sources have been carried out sep-

arately in many cases, but recently there have been some studies of speech recognition

under conditions in which other sound sources exist. For example, some researchers have

been trying recognition of multiple speech sources or speech under noise using missing fea-

ture theory [60, 61]. Furthermore, a number of researchers have recently been attempting

speech recognition in noisy (e.g., in-car) environments [62].

The other field in non-musical sound recognition research is recognition of environmen-

tal sounds. A relatively limited number of attempts [63, 64] have been reported compared

to speech and music recognition.

2.1.4 Perceptual Timbre

What kind of physical properties of sounds correspond to what we perceive as timbre?

This has been an unsolved problem in acoustics for many years. Of the three basic psy-

choacoustical parameters of sounds (pitch, intensity, and timbre), pitch and intensity can

usually be measured in physical properties, i.e., fundamental frequency and amplitude.

Timbre, on the other hand, which is also called tone color or tone quality, is difficult to put

on a physical scale. Timbre is considered multidimensional and more complex than the

other parameters and hence has never been fully defined. In fact, the American Standards

Association has defined timbre as the following:

“Timbre is that attribute of auditory sensation in terms of which a listener

can judge that two sounds having the same loudness and pitch are dissimilar.”

This definition is indirect and has serious limitations. In order for this definition to apply,

for example, two sounds need to be able to be presented at the same pitch.

There are two acceptable standpoints in the definition of timbre. One is to consider

timbre to be an acoustical characteristic corresponding to all aspects of the impression

that humans receive from sounds. In this case, timbre would be described verbally. The

other is to consider timbre to be an acoustical characteristic linked to differences between

the sounds of different instruments. In this case, the names of the instruments can be

used as labels for the timbres [54, 65]. While studies on computational musical instrument

22



2.1 Musical Instrument Recognition

recognition including ours adopt the latter standpoint in general, studies on human timbre

perception such as those described here adopt the former standpoint.

Human timbre perception was well studied in the 1970s. In most of these studies,

human subjects were asked to rate the timbre similarity between a pair of stimuli and

the results were analyzed by multidimensional scaling (MDS). The stimuli used were real

instrument sounds in some studies and artificial sounds in other studies.

Wedin and Goude [66] used stimuli of nine real instruments and asked two tasks of

their human subjects. The first task was to identify the instrument name of each stimulus.

From the results of this task, they discussed the accuracy of correct identification of

instruments by humans. The second task was to rate the timbre similarity of every pair

of stimuli. After that, they also asked the subjects to state the similarity between the

instruments presented only by name. The results of the former similarity rating showed

the “perceptual structure” of the acoustic characteristics of musical instruments, while

the results of the latter similarity rating showed the “cognitive structure” of instruments,

that is, knowledge about classification of the instruments. They concluded that these two

structures of instruments were different for both trained and naive listeners.

Bismark [67] investigated the relationship between verbal attributes and spectral pat-

terns in terms of verbal attributes from timbre factor analysis. In the experiments, 30

pairs of verbal attributes and 35 artificial sounds were used.

Grey [68], in a similar manner to Wedin and Goude, evaluated the perceptual simi-

larity of timbres using 16 notes of synthetic sounds emulating 12 orchestral instruments.

Perceptual similarity was measured using two methods: one judged the similarities for all

pairs of the 16 notes, and the other used the accuracy of listeners in associating specific

names with the notes in a learning task with feedback. In this case, the psychological dis-

tance of two tones was related to the number of confusions that occurred between them.

The results of similarity estimation were then treated with MDS and hierarchical cluster-

ing. Three dimensions were found, corresponding to the spectral energy distribution, the

presence of synchronicity in the transients of the higher harmonics, and the presence of

low-amplitude, high-frequency energy in the attack segment, respectively.

The same author subsequently studied timbre discrimination in musical context while

most of the previous studies dealt with discrimination of isolated tones [69]. He prepared

two kinds of synthetic tones for each target instrument (i.e., clarinet, basson, and trum-

pet). One is the “complete” version where the signal is emulated directly from a spectral
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analysis, and the other is the “line-segment” version where the power envelope of each

overtone is approximated to a time-varying function. He used 12 musical contexts (pat-

terns of note sequences) consisting of isolated tonal comparisons, single-voice patterns,

and multi-voice (up to three) patterns. The stimuli of these patterns were played back

from computers using synthetic tones of the clarinet, basson, and trumpet. When they

were played back, the different versions of synthesis may or may not have been used for

the first and second halves. Thirteen musically sophisticated listeners judged whether

the presented stimulus changed in timbre, that is, whether the first and second halves

used the same version of synthesis. When the instrument was the clarinet or trumpet,

the accuracy of judgment for the multi-voice patterns was the lowest of the three kinds

of context patterns, and that for the single-voice pattern was lower than that for the

isolated tonal comparisons. For the basson, on the other hand, there were no significant

differences among the context patterns.

While some studies on timbre perception were conducted in the 1970s [70, 71], relatively

little research occurred again until the 1990s, for example, [72–74].

Marozeau et al. [75] focused on the dependency of timbre on F0. They conducted three

experiments. In Experiment I, subjects compared the timbres of stimuli produced by a

set of 12 instruments with equal F0, duration, and loudness. This was repeated three

times with different F0s. The results showed that the dissimilarity matrices were similar

at different F0s. In Experiment II, the same stimuli were rearranged in pairs, each with

the same difference in F0s (i.e., 2 and 11 semitones). The similarity matrices for both 2-

and 11-semitone differences resembled those of Experiment I. In Experiment III, subjects

rated the timbre similarity between pairs of instruments with and without a difference

in F0s, and the similarity matrices were analyzed similarly to the previous experiments.

They concluded that timbre differences could be perceived independently from differences

of F0s when the F0 differences were smaller than one octave.

2.2 Content-based Music Information Retrieval

Music information retrieval (MIR) has become one of the hottest topics in the field of

computing technology. The International Conference on Music Information Retrieval

(ISMIR) has been held annually since 2000, and its scale (e.g., the numbers of submitted

and published papers and attendees) has grown larger year on year. Although a thorough
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review is impossible because of the great variety of topics being studied, we review recent

MIR studies here from several aspects.

2.2.1 Styles of Retrieval

Although various styles of MIR have been proposed, the styles that have been particularly

well studied are “Query-by-Humming” and “Query-by-Example”.

The Query-by-Humming, as the name implies, enables one to retrieve the title of

a musical piece by humming or singing its melody using sounds like “la-la-la...” [76].

Whereas the Query-by-Humming was the predominant subject in the 1990s, other styles

have been more studied in recent years. Query-by-Humming technology has mostly move

on to the industrial application phase.

The Query-by-Example is also known as “similarity-based MIR.” In this style, users

specify their favorite musical piece(s) and the system searches for musical pieces that are

similar to the specified piece(s) in some sense. The main issue in this style is the design

of the similarity measure.

There have been many other styles used also. For example, retrieval by specifying a

certain fragment of a musical audio signal is effective in the situation where one would

like to know the title of a musical piece that is currently being heard [77]. Retrieval by

specifying adjectives (e.g., happy) enables us to search for musical pieces that present a

certain impression [78].

2.2.2 Techniques for MIR

Here, we briefly review music similarity measure, genre classification, and musical content

description as techniques required for MIR, although this is not an exhaustive list.

Music Similarity Measure

The design of appropriate music similarity measures is a central subject in the recent

MIR field. Aucouturier and Pachet’s study [79], which is one of the pioneering studies

on music similarity, used cepstrum coefficients and GMMs for calculating music similar-

ity. Paulus and Klapuri [80] proposed a method for measuring the similarity of rhythmic

patterns. Pampalk developed a MATLAB toolbox for calculating music similarity us-

ing various acoustic features [81]. Casey and Slaney [82] pointed out the importance of

temporal modeling of musical features in calculating music similarity and investigated
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several methods for modeling temporal features. There have also been many studies

related to music similarity, such as classification and visualization of music collections

using self-organizing maps (SOMs) based on music similarity [83], evaluation of acoustic

and subjective music similarity measures [84], and detailed investigation of timbre sim-

ilarity [85, 86]. These studies mainly used low-level acoustic features such as cepstrum.

Higher-level, musically meaningful features are desired for further improvement of music

similarity [87].

Genre Classification

Genre classification is also widely studied (e.g., [88]; see [89] for a review) because it

is directly usable for a task such as searching for jazz music. In addition to the music

similarity measurement, genre classification is usually performed using low-level acoustic

features and pattern recognition techniques such as GMMs and SVMs. This task has a

difficult problem stemming from the ambiguity of musical genres. There are no agreed

methods for designing a genre taxonomy that is widely acceptable because there are no

strict definitions and unambiguous boundaries of genres.

Musical Content Description

The ability to describe musical elements (e.g., melody, rhythm, harmony, and timbre)

in a universal format will play an important role in achieving sophisticated MIR. Such

descriptions are called metadata, and frameworks for widely distributing and exchanging

them have been established in recent years.

MPEG-7, formally named “Multimedia Content Description Interface”, is a standard

for describing multimedia content, including music, in a universal format as metadata

established by the International Organization for Standardization (ISO) [90]. MPEG-7

includes a standardized set of descriptors (Ds) and description schemes (DSs) for audio-

visual content as well as a formal language for defining new Ds and DSs. In the context

of MPEG-7, Ds represent elements of the content (e.g., a representation of a feature and

the syntax and semantics of the feature representation) while DSs represent structures of

the content (e.g., the relationship between Ds and/or DSs). The language for designing

Ds and DSs is called Description Definition Language (DDL) and is derived by extension

of XML Schema, which is developed by the W3C consortium using Extensible Markup

Language (XML) as the basis.
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Several Ds and DSs for audio content (Audio Ds and DSs) are included in the original

MPEG-7 standard. These have been designed on the basis of the idea of two-layer de-

scription. Audio Ds and DSs can be divided into generic lower-level tools and application-

specific high-level tools. The former represent features that can be automatically extracted

from signals, such as AudioWaveformType, AudioPowerType, AudioSpectrumCentroid-

Type, AudioFundamentalFrequencyType, LogAttackTimeType, HarmonicSpectralCen-

troidType, and TemporalCentroidType. The latter consist of general sound recognition

and indexing tools, spoken content description tools, musical instrument timbre descrip-

tion tools, and melody description tools. These represent more abstract concepts than

those represented by the former and include Ds/DSs assuming manual annotation.

Gomez et al. [91] discussed the use and enhancement of the MPEG-7 standard to

describe musical content. They pointed out that the current MPEG-7 standard has

limitations regarding different musical layers, e.g., melodic, rhythmic, and instrumental,

and presented some proposals for overcoming the limitations. They did not, however,

deal with automation of musical content description.

Another approach for music description is XML formats based on traditional musical

scores. MusicXML [92] and WEDELMUSIC Format [93] are the two major score-based

formats, and many techniques for handling documents in these formats have actively

been developed. It is however difficult to describe content that is not usually included in

traditional scores, such as acoustic characteristics of a certain instrument sound.

Moreover, there have been some research projects aimed at developing techniques for

automatically describing musical content from audio signals.

The CUIDADO project [94, 95] aimed to develop a new chain of applications through

the use of audio/music content descriptors, in the spirit of the MPEG-7 standard. The

project included the design of appropriate description structures, the development of

extractors for deriving high-level information from audio signals, and the design and

implementation of two applications: the Sound Palette and the Music Browser. These

applications include new features, which systematically exploit high-level descriptors and

provide users with content-based access to large catalogues of audio/music material.

Goto [96] launched the music scene description project, the goal of which is to build

a computer system that can understand musical audio signals in a human-like fashion.

Even if people listening to music cannot transcribe it as a traditional score, they can

easily hum the melody and notice a phrase being repeated. He claimed, from this fact,
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that transcribing music as a traditional score is not essential for music understanding and

that the computer system should obtain higher-level descriptions. He therefore developed

techniques for extracting five high-level descriptions: hierarchical beat structure, melody

line, base line, repeated sections, and chorus sections. However, his system and its details,

input/output data formats for example, are not publicly available.

The SIMAC project [97] investigated extraction of the semantic description of musical

content from audio signals. The descriptors that they dealt with include rhythm, har-

mony, timbre, subjective intensity, and structure. The project developed music similarity

measures and created a prototype MIR system based on the measures.

2.2.3 Applications of MIR Techniques

MIR can be useful in itself but it is also used as a subtask of automatic playlist gener-

ation [98], content-based music recommendation [99], etc. Furthermore, integrated envi-

ronments for accessing music, such as PersonalRadio [100], have been proposed. Person-

alRadio is a prototype for set-top-box music services with a slider ranging between two

extreme values (from conservative to exploratory). The explorativeness of music selection

is determined depending on the position of the slider.

2.3 Positioning of This Thesis

In this section, we discuss the positioning of this thesis by comparing it with related

studies reviewed above.

2.3.1 Positioning of Musical Instrument Recognition

The relationship between musical instrument recognition and the related fields that we

reviewed above are shown in Figure 2.1. Musical instrument recognition is placed in the

broader field of music recognition because music recognition aims at recognizing various

aspects of music from audio signals. Also, it is a subtask for automatic music transcrip-

tion, usually referred to as transcribing music in a traditional musical score format, and

musical content description, usually referred to as describing what the music is like in an

XML-based format. Because CASA aims to provide a unified framework that deals with

a variety of sounds, it obviously includes musical instrument recognition as a subtask.

Musical instrument recognition is also useful as a subtask for content-based MIR. Pattern
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Figure 2.1: Relationship between musical instrument recognition and related fields.

recognition is the research field that aims to connect patterns observed through a sensor

with their semantic categories. It therefore includes musical instrument recognition as

well as character recognition, image recognition, and speech recognition. F0 estimation

for musical signals and musical instrument recognition have a commonality in terms of

inputs to the systems. Some techniques, especially for the front-end, can therefore be

commonly used. Both are subtasks for automatic music transcription. Studies on com-

putational musical instrument recognition and human timbre perception investigate the

nature of timbre through different approaches.

Relationship with Automatic Music Transcription and F0 Estimation

We consider both musical instrument recognition and F0 estimation to be indispensable

subtasks for automatic music transcription because both are necessary for generating a

complete multi-part score with instrument labels. Notes for different instruments, in gen-

eral, should be described on different staves in a score, and each stave should have the

description of the instrument. However, most of the studies aimed at automatic music

transcription have dealt with F0 estimation only. This could be because the current F0

estimation technologies can barely deal with complex musical pieces played on multi-

ple instruments accurately. Although F0 estimation for multi-note performances played

on a single instrument has been actively studied and is gradually reaching a practical
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level, F0 estimation for multi-part performances played on multiple instruments remains

a challenging problem.

If musical instrument recognition is applied to automatic music transcription, instru-

ment recognition should be performed notewise; in other words, the instrument playing

each note contained in the target polyphonic musical signals should be recognized. In

Chapter 5, we address such notewise instrument recognition for polyphonic music (up to

quartet). We provide a solution to the problem of the overlapping of common-frequency

partials played on multiple instruments based on feature weighting using a mixed-sound

template. We also introduce musical context to avoid musically unnatural errors. These

can be directly applied to automatic music transcription for polyphonic music. In fact,

we apply them to transcribing musical audio signals in a simplified MusicXML format.

MusicXML is one of the most popular XML formats for transcribing music in a traditional

musical score form.

F0 estimation is also used as a preprocess of musical instrument recognition because

most acoustic features used for instrument recognition are based on the harmonic struc-

ture, which cannot be extracted until the F0 is estimated. In our instrument recognition

method described in Chapter 5, F0 estimation is used as a preprocess; however, correct

data are given in experiments. On the other hand, the instrogram analysis, described in

Chapter 6, does not use F0 estimation as a deterministic preprocess. This new framework

instead probabilistically integrates the results of the processes corresponding to F0 esti-

mation and instrument recognition. We consider that we have developed a new relation

of F0 estimation and instrument recognition.

Relationship with Content-based Music Information Retrieval

Musical instrument recognition techniques are expected to play an important role in

improvement of content-based MIR. For example, most existing studies on music similarity

measurement and genre classification have used lower-level features such as MFCCs. Such

features can be reliably extracted and are useful for capturing characteristics of music to

some extent. However, the correspondence of these features and their musical meaning

is unclear. For example, the difference of MFCCs between two pieces may be caused by

the difference of instrumentation and may be caused by the difference of chords. Thus

it is difficult to achieve elaborate services, such as adapting the weight of each musical

element to the preferences of users in measuring music similarity. To solve this problem,
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Figure 2.2: Long-span roadmap to MIR applications.

higher-level, musically meaningful features including instrumentation are necessary.

Projects of musical content description such as those reviewed above will solve this

problem. Most of these studies, however, did not deal with instrument recognition. Our

instrument recognition study and such projects are therefore complementary, and inte-

grating them will achieve total music description.

We next discuss the positioning of musical instrument recognition within a long-span

roadmap to sophisticated MIR applications (Figure 2.2). MIR applications can be classi-

fied according to their stances into two different categories. The first is retrieval of musical

pieces that are known to the user based on limited information. The Query-by-Humming

style, for example, aims to identify musical titles only from the melodies hummed by the

user. The second is exploration of musical pieces that are unknown to the user. The

Query-by-Example style is an example of this. Music recognition including instrument

recognition is expected to become a key technology for this type of MIR.
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Relationship with Pattern Recognition and Speech/Speaker Recognition

Both musical instrument recognition and speech/speaker recognition are concrete domains

of pattern recognition. Theoretical and practical knowledge of general pattern recogni-

tion is useful in musical instrument recognition research. In fact, we apply commonly

used theories and techniques in pattern recognition research, such as principal component

analysis (PCA), linear discriminant analysis (LDA), multivariate normal distribution, and

the Bayes decision rule. In addition, musical instrument recognition and speech/speaker

recognition have a commonality in terms of the feature of inputs; inputs assumed in

both studies are time-series data. We therefore introduce HMMs in Chapter 6 to model

time-series data inspired by the successful use of HMMs for speech recognition.

Relationship with Human Timbre Perception

A common interest in studies on computational musical instrument recognition and human

timbre perception is what exactly is timbre. Although standpoints for defining timbre

differ, our study and some studies on human timbre perception focus on similar aspects

of timbres.

First, we and Marozeau et al [75] focus on the dependency of timbres on F0s. We both

point out that F0 is a factor influencing timbre. Although Marozeau et al. concluded that

relative perception of timbre similarity could be independent from F0, acoustic features of

musical instruments definitely vary according to the F0. We therefore deal with explicitly

modeling the dependency on the F0.

Second, we and some studies on human timbre perception deal with hierarchical clas-

sification of timbres. The hierarchical taxonomies of timbres that we build by calculating

acoustic similarity on a computer and those based on human perception can be compared.

2.3.2 Positioning of This Thesis within Previous Musical Instru-
ment Recognition Studies

In contrast to the comparison of our study with related fields above, we now compare our

study with previous musical instrument recognition studies.

Difficulty of Problem

Two main factors affecting the difficulty of instrument recognition are the numbers of

simultaneous notes (#SN) and target instruments (#TI). If #SN for recordings to be
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Figure 2.3: Comparison of the numbers of simultaneous notes (#SN) and target in-
struments (#TI) among our study and previous studies (only several typical studies are
mentioned here).

recognized is one, the recordings are called solo or monophonic. If #SN is greater than

one, the overlapping of common-frequency partials of different instrument sounds often

occurs. Because the overlapping occurs more often as #SN increases, #SN gives an

indication of the difficulty of instrument recognition. In addition, instrument recognition

is more difficult as #TI is increased in general. The chance rate, which is an expectation

of the success rate when instruments are determined at random, becomes lower as #TI

is greater. #SI and #TI among our study and previous studies are compared in Figure

2.3. We deal with solo sounds of 19 instruments in Chapter 3 and duo, trio, and quartet

music played on instruments chosen from five instrument candidates in Chapter 5. We

consider these state-of-the-art.

Another factor affecting the difficulty of instrument recognition is whether the correct

data of F0s etc. are given in advance. Especially for polyphonic music, as previously

described, F0 estimation is still a challenging problem. Most previous studies dealing
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with polyphonic music therefore manually gave the correct data of F0s etc. in their ex-

periments [37, 40]. We also give the correct data of F0s etc. in Chapter 5 to evaluate

the performance of instrument recognition alone, because our focus in Chapter 5 is on

how to deal with the above-mentioned overlapping problem. We have already described

Kinoshita et al.’s report [38] that the performance of instrument recognition decreases by

introducing automatic F0 estimation. To solve this problem, we need a new framework

where errors of F0 estimation do not influence the performance of instrument recognition,

in addition to trying to improve the F0 estimation performance. The purpose of Chapter 6

is to develop such a new framework.

Choice between synthesized music and real-performance recordings also affects the

difficulty of instrument recognition. Most previous studies used synthesized music as test

samples. For example, Kashino et al. [46] and Kinoshita et al. [38] tested their methods on

polyphonic musical audio signals that were synthesized by mixing isolated monophonic

sounds of every target instrument on a MIDI sampler. This was because information

on the instrument for every note that was used as correct references in the evaluation

was then easy to prepare. We also use synthesized music in Chapter 5. On the other

hand, the framework proposed in Chapter 6 performs instrument recognition non-notewise

and hence no notewise transcription is needed for evaluation. We therefore use real-

performance recordings in the evaluation.

The problem of non-registered instruments described in Chapter 4 has not been

pointed out or dealt with in previous studies on instrument recognition although a similar

problem is known as the out-of-vocabulary problem in speech recognition studies. The

purpose of this chapter is to point out and tackle this new problem rather than to im-

prove the recognition rate. Our solution of category-level recognition is tested only on

solo sounds in our experiments, but its concept can be applied to polyphonic music with

no modification.
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Chapter 3

F0-dependent Timbre Modeling

In this chapter, we propose an F0-dependent multivariate normal distribution as a solution

to the pitch dependency of timbres. We then discuss acoustic features for musical instru-

ment recognition. After that, we report the results of experiments on the F0-dependent

multivariate normal distribution using a solo musical instrument sound database.

3.1 Introduction

One of the main difficulties in musical instrument recognition for both monophonic and

polyphonic music is the fact that acoustic features depend on the pitch. Compared to other

sounds including human voices, timbres of musical instruments are obviously affected by

the pitch due to their wide range of pitch. For example, the pitch range of the piano covers

over seven octaves. This is why it is indispensable to cope with this pitch dependency of

timbres to attain accurate musical instrument recognition (Figure 3.1).

The pitch dependency of timbres, however, has not been explicitly dealt with in pre-

vious studies. Most previous studies used sounds of every pitch within the pitch range of

each target instrument for training. Also, Eronen and Klapuri [23] and Kashino et al. [46]

treated F0 as an element of the feature vector. However, the quantitative modeling of

how acoustic features vary according to the pitch has not been investigated.

In this chapter, we extend a multivariate normal distribution to represent the pitch-

dependent distributions of musical instrument sounds in a feature space. The key idea

behind this is to approximate the pitch dependency of each feature representing timbres of

musical instrument sounds as a function of fundamental frequency (F0). The approximate

function represents the relationship between the F0 and each feature and hence can be

considered to represent the position (mean) of the distribution of the feature at each F0.
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Figure 3.1: Example of the timbre of musical instruments (piano) varying according to
the pitch. Whereas the power of the piano sound slowly decay at a lower pitch as shown in
(a), the speed of the decay is very high at a high pitch as shown in (b). Such a tendency is
not limited to the decay of the power, and every acoustic features of musical instruments
depend on the pitch in general.

This function is therefore introduced as the mean vector of the extended distribution.

This extended distribution is called F0-dependent multivariate normal distribution.

3.2 F0-dependent Multivariate Normal Distribution

Musical instrument identification in this chapter is basically performed based on the

Bayes decision theory under the assumption that the given audio signal has only a single

isolated monophonic tone. Let Ω = {ω1, · · · , ωm} be the set of target instruments and let

x = (x1, · · · , xd)
′ be the vector consisting of acoustic features, x1, · · · , xd, extracted from

the given audio signal, where ’ denotes the transposition operator. The problem is then

formulated as maximization of p(ωi|x), that is,

ω̂ = argmax
ωi∈Ω

p(ωi|x) = argmax
ωi∈Ω

p(x|ωi)p(ωi)∑
ωj∈Ω

p(x|ωj)p(ωj)
= argmax

ωi∈Ω
p(x|ωi)p(ωi),

where p(x|ωi) is a probability density function (PDF) and p(ωi) is the a priori probability

with respect to the instrument ωi. The PDF p(x|ωi) is calculated by analyzing the distri-

bution of a large number of audio data of the instrument ωi prepared in advance (called

training data). However, tone features at different pitches, in general, have different posi-

tions (means) of distributions in the feature space. The F0-dependent multivariate normal

distribution is proposed to represent this dependency of the distribution on the pitch. It

has two parameters: an F0-dependent mean function and an F0-normalized covariance.
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Figure 3.2: Examples of F0-dependent mean functions. Left: piano’s 4th basic vector.
Right: Cello’s 1st basic vector. The basic vectors are obtained by applying PCA and
LDA.

The former represents the pitch dependency of features and the latter represents the non-

pitch dependency. Approximating the mean of the distribution as a function of F0 makes

it possible to model how the features will vary according to the pitch with a small set of

parameters.

3.2.1 Parameters of F0-dependent multivariate normal distri-
bution

The following two parameters of the F0-dependent multivariate normal distribution

NF0(μi(f), Σi) are estimated for each instrument ωi.

• F0-dependent mean function μi(f)

For each element of the feature vector, the pitch dependency of the distribution is

approximated as a function of F0 using the least square method. In this paper, a

cubic polynomial is used.

• F0-normalized covariance Σi

The F0-normalized covariance is calculated with the following equation:

Σi =
1

ni

∑
x∈χi

(x − μi(fx))(x − μi(fx))′,

where χi is the set of the training data of the instrument ωi and ni is the total

number. fx denotes the F0 of the feature vector x. Because the F0-dependent
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mean function represents the pitch dependency of features, the F0-normalized co-

variance, obtained by subtracting the mean from each feature, eliminates the pitch

dependency of features.

3.2.2 Bayes decision rule for F0-dependent multivariate normal
distribution

Once the parameters of the F0-dependent multivariate normal distribution have been

estimated, the Bayes decision rule is applied to identify the name of the instrument. The

discriminant function is defined as a maximization problem of a posteriori probabilities

p(ωi|x; f) such as the following equation:

ω̂ = argmax
ωi

p(ωi|x; f)

= argmax
ωi

p(x|ωi; f)p(ωi)

p(x)

= argmax
ωi

p(x|ωi; f)p(ωi)

= argmax
ωi

{log p(x|ωi; f) + log p(ωi)} , (3.1)

where x is a given feature vector, p(x|ωi; f) is a probability density function (PDF) of

the F0-dependent multivariate normal distribution and p(ωi; f) is the a priori probability

of the instrument ωi.

The PDF of the F0-dependent multivariate normal distribution is defined by

p(x|ωi; f) =
1

(2π)d/2|Σi|1/2
exp

{
−1

2
D2

M(x; μi(f), Σi)
}

, (3.2)

where d is the number of dimensions of the feature space and D2
M is the squared Maha-

lanobis distance defined by

D2
M(x; μi(f), Σi) = (x − μi(f))′Σ−1

i (x − μi(f)).

Substituting Eq. (3.2) into Eq. (3.1), thus, generates the following discriminant function:

ω̂ = argmax
ωi

{
−1

2
D2

M(x, μi(f)) − 1

2
log |Σi| + log p(ωi; f)

}
.

The a priori probability p(ωi; f) represents whether the pitch range of the instrument

ωi includes f , that is,

p(ωi; f) =

{
1/c (if f ∈ Ri)
0 (if f �∈ Ri)

where Ri is the pitch range of the instrument ωi, and c is the normalizing factor for

satisfying
∑

i p(ωi; f) = 1.
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3.3 Acoustic Features

This section describes acoustic features used for recognizing musical instruments. We first

extract the harmonic structure from the given audio signal and then extract 129 features

from the harmonic structure. These features can be categorized into four groups: spectral,

temporal, modulation, and peak kurtosis features. Whereas the spectral, temporal, and

modulation features are designed based on previous studies, the peak kurtosis features are

originally designed and have not been used in previous studies. In the phase of applying

the Bayes decision rule, we use an 18-dimensional feature space obtained by applying

dimensionality reduction techniques to the original 129-dimensional feature space, instead

of directly using the original 129-dimensional feature space, because the original high-

dimensional space is redundant and may cause the curse of dimensionality.

3.3.1 Preprocessing

Given a musical instrument signal, it is first analyzed by the short-time Fourier transform

(STFT) with a 4096-point Hanning window for every 10ms, and spectral peaks are ex-

tracted from the power spectrum. Then the harmonic structure H is obtained from these

peaks. The harmonic structure H is given by

H = {(Fi(t), Ai(t)) | i = 1, 2, · · · , h, 0 ≤ t ≤ T},

where Fi(t) and Ai(t) are the frequency and amplitude of the i-th partial at time t.

Frequency is represented by relative frequency where the temporal median of the F0 is

1. Above, h is the number of harmonics, and T is the note duration. In the current

implementation, h is 30.

3.3.2 Feature Extraction

The following features are extracted.

Spectral Features

1 Spectral centroid (SC)

The SC is given by the following equation:

SC =
h∑

i=1

Ai · Fi

/
h∑

i=1

Fi,
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where Ai = mediant Ai(t) and Fi = mediant Fi(t).

This feature is also known as brightness and is commonly used in most existing

studies [20, 23, 29, 32, 33, 35, 36, 38, 41, 46, 50] as well as studies on genre classifica-

tion [88] and mood detection [101]. It has also been adopted in the MPEG-7 Audio

Description Framework [90].

2 – 30 Relative cumulative powers (RCP)

The RCPs are given by the following equation:

RCP(k) =
k∑

i=1

Ai

/
h∑

i=1

Ai (k = 1, 2, · · · , h − 1)

These features are related to the spectral rolloff [32, 53, 88, 101]. The spectral rolloff

is the index of the frequency at which the relative cumulative powers reach to a

given value whereas the RCPs are relative cumulative powers themselves.

31 Odd/even power ratio (OER)

The OER is calculated by the following equation:

OER = p

⎛
⎝|X| ≤ log

h′∑
i=1

A2i − log
h′∑

i=1

A2i−1

⎞
⎠ ,

p(|X| ≤ z) =
∫ z

−z
(1/π

√
2s2) exp(−x2/2s2)dx,

where h′ = 	h/2
 (	·
 represents the floor function) and s = 100 in the current im-

plementation. Using the cumulative distribution function for a normal distribution,

which is described as p(·) above, is because the feature should be finite even if the

amplitudes of all odd or even components are zero.

This feature has been commonly used in instrument recognition [20, 29, 38, 46, 50]

because it is well known that some instruments such as the clarinet have low power

in even partials. Since the F0 information is necessary to calculate this feature, this

has not been used in some studies that do not use F0 estimation.

32 – 40 The number of stably existing partials (NEP)

The NEP is calculated as the number of partials the duration of which is p% longer

than the longest duration (p = 10, 20, · · · , 90) as follows:

NEP(p) = n
({

i ∈ {1, · · · , h}
∣∣∣∣ len(Ai) >

p

100
max

j
(len(Aj))

})
,
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Figure 3.3: Example of temporal features (piano, C4, forte), where p′(t) is a differential
of the power at time t.

len(Ai) = n ({t ∈ [0, T ] | Ai(t) > Aθ}) ,

where n(X) is the number of the elements in the set X, Aθ is an experimentally

determined threshold. The NEP was not commonly used in previous studies.

Temporal Features

41 The power decay speed (PDS)

The PDS is calculated as the gradient of the straight line approximating the power

envelope using the least square method (Figure 3.3).

This feature is useful for distinguishing decayed instruments such as the piano and

sustained instruments such as the flute and violin. A similar feature named “post-

onset slope of amplitude decay” or “slope of line fitted into rms-energy curve after

attack” has therefore been used in [20, 23]. Another example of features useful for

distinguishing decayed and sustained instruments is temporal centroid [29, 50], which

is also part of the MPEG-7 Audio Description Framework [90].

42 – 58 Average differential of the power envelope (ADP)

The ADP is calculated after extracting initial t-sec bits (t = 0.15, 0.20, · · · , 0.95) as

follows:

ADP(t) = mean
0≤τ≤t

(A(τ + dt) − A(τ)), A(t) =
h∑

i=1

Ai(t).
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This feature represents the strength of the attack given t is a small value, while it

represents the tendency of temporal variations after the attack part given t is a large

value. To represent the strength of the attack, attack time (or onset duration) has

commonly been used [20, 23, 29, 50] (the MPEG-7 Audio Description Framework also

includes LogAttackTime). We however does not use it because strictly determining

the boundary of the attack and sustain/release parts is not so easy. A similar feature

to the ADP has been used in [38].

59 – 75 Relative power (RP)

The RP is given as the ratios of the powers at the t-sec after the onset time (t =

0.15, 0.20, · · · , 0.95) to the maximum power as follows:

RP(t) = A(t)
/

max
0≤τ≤T

A(τ)

Modulation Features

76 , 77 The amplitude and frequency of AM

78 , 79 The amplitude and frequency of FM

The amplitude of each modulation is calculated as the inter-quartile range (IQR) of

the difference between the original envelope and the sufficiently smoothed envelope.

The smoothing method proposed by Savitzky and Golay [102] is used. The frequency

of each modulation is calculated as the zerocrossing rate of the temporal differential

of the envelope. Those of other modulations are calculated in the same way.

Features related to AM and FM have been used in some existing studies [20, 23, 32,

41], but the methods for calculating them are completely different among different

studies.

80 , 81 The amplitude and frequency of the spectral centroid modulation

82 –107 The amplitude and frequency of the k-th MFCC modulation

These modulations are not as common as AM or FM but the centroid modulation

has also been used in [20]. Whereas MFCCs or ceptral coefficients themselves have

commonly been used [21, 22, 28, 29, 41, 50], but the modulations of MFCCs have not

been used.
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Figure 3.4: Power right after the onset. The kurtosis of spectral peaks of sounds containing
large non-harmonic components such as (b) tends to be low compared to (a).

Peak Kurtosis Features

108–118 Temporal average of the kurtosis of spectral peaks in each partial

119–129 The amplitude of the temporal modulation of the kurtosis of spectral peaks in

each partial

The kurtosis of spectral peaks is related to how large non-harmonic components

are included. If a sound has small non-harmonic components, spectral peaks will

have large kurtosis. If it has large non-harmonic components, they will have small

kurtosis (see Figure 3.4). The kurtosis of spectral peaks can therefore be used for

modeling the degree of incorporation of non-harmonic components, which has not

been considered in previous studies.

3.3.3 Dimensionality Reduction

After the feature extraction, the feature space is standardized and then the dimensionality

of it is reduced by two methods: the 129-dimensional feature space is reduced to a 79

dimensional one by principal component analysis (PCA) and then it is further reduced

to an (m − 1)-dimensional one by (Fisher’s) linear discriminant analysis (LDA). PCA

generates new feature axes by linear combinations of the original feature axes so that

the new feature axes are uncorrelated, and therefore it transforms a feature space into a

lower-dimensional one reducing the redundancy incorporated in the original feature space.

LDA, on the other hand, is a dimensionality reduction method based on the ratio of the
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between-class scatter to the within-class scatter, called Fisher’s criterion, and thus take

the separability of the classes into account. Using LDA can therefore be expected to

improve the performance of instrument recognition. Using PCA before LDA is because

it is better that features as inputs of LDA have lower correlation. The feature space

generated by LDA is (m − 1)-dimensional for m-class data set. Since we deal with 19

instruments here, the feature space becomes 18-dimensional.

Dimensionality reduction has commonly been used also in existing studies. Kashino et

al. [46] and Kaminskyj and Czaszejko [36] used PCA. Livshin [29] used LDA. Agostini et

al. [33] used quadratic discriminant analysis (QDA) and canonical discriminant analysis

(CDA). Eronen [30] used independent component analysis (ICA). Another approach for

reducing the redundancy is feature selection. This approach, as the name implies, selects

some important features and removes the other redundant features instead of making

new feature axes by combinations. Gradual Descriptor Elimination (GDE), proposed by

Livshinet al. [29], determines the feature to be removed based on the result of LDA and

removes it iteratively until the number of the remaining features is n (manually given).

Inertia ratio maximization using feature space projection (IRMFSP), proposed by Essid

et al. [32, 41], appends the additional feature maximizing Fisher’s criterion iteratively, as

the details have been described in Section 2.1.1. Fujinaga [24, 25] determined the feature

set that shows the best recognition rate using the genetic algorithm (GA), the details of

which have also been described in Section 2.1.1.

3.4 Experiments

3.4.1 Experimental Conditions

We conducted experiments on musical instrument recognition for investigating improve-

ment of the performance by the proposed method. We obtained the recognition rates by

the commonly used multivariate normal distribution (called baseline) and by the proposed

F0-dependent multivariate normal distribution, and compared them.

The benchmark used for evaluation is a subset of the “RWC Music Database: Musical

Instrument Sound” (RWC-MDB-I-2001) [103], which is a large musical instrument sound

database available to researchers around the world. This subset summarized in Table 3.1

was selected by the quality of recorded sounds and consists of 6,247 solo tones of 19

orchestral instruments. All data are sampled at 44.1 kHz with 16 bits. We first divided
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Table 3.1: Contents of the database used in this paper.

Instrument name pitch # of # of indi- Intensity Articul-

(Abbrev.) range tones viduals ation

Piano (PF) A0–C8 508

Classical Guitar (CG) E2–E5 696

Ukulele (UK) F3–A5 295

Acoustic Guitar (AG) E2–E5 666 3

Violin (VN) G3–E7 528 Forte,

Viola (VL) C3–F6 472

Cello (VC) C2–F5 558

Trumpet (TR) E3–A
6 151 2 normal

Trombone (TB) A
1–F
5 262 normal

Soprano Sax (SS) G
3–E6 169

Alto Sax (AS) C
3–A5 282 3 only

Tenor Sax (TS) G
2–E5 153 &

Baritone Sax (BS) C2–A4 215

Oboe (OB) A
3–G6 151 2

Faggoto (FG) A
1–D
5 312 piano

Clarinet (CL) D3–F6 263 3

Piccolo (PC) D5–C8 245

Flute (FL) C4–C7 134 2

Recorder (RC) C4–B6 160 3

the whole data into 10 groups, and then repeated the following step 10 times: each

time, we left out one of the 10 groups for training and used the omitted one for testing.

That means that nine tenths of the data listed in Table 3.1 were used for calculating

F0-dependent mean functions and F0-normalized covariances. This experiment technique

is called 10-fold cross validation.

We evaluated the category-level performance of our method, because the category of

instruments is useful for some applications including music retrieval. For example, when
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Chapter 3 F0-dependent Timbre Modeling

Table 3.2: Categorization of 19 instruments.

Category Instruments (abbreviation)

Piano Piano (PF)

Guitars Classical Guitar (CG), Ukulele (UK), Acoustic Guitar (AG)

Strings Violin (VN), Viola (VL), Cello (VC)

Brasses Trumpet (TR), Trombone (TB)

Saxophones Soprano Sax (SS), Alto Sax (AS),

Tenor Sax (TS), Baritone Sax (BS)

Double Reeds Oboe (OB), Faggoto (FG)

Clarinet Clarinet (CL)

Air Reeds Piccolo (PC), Flute (FL), Recorder (RC)

a user wants to find a piece of piano solo on a music retrieval system, the system can

reject pieces containing instruments of different categories, which can be judged without

identifying individual instrument names. We adopted the categories of musical instru-

ments summarized in Table 3.2, which are determined based on the sounding mechanisms

of instruments and existing studies [20, 23].

3.4.2 Experimental Results

Table 3.3 summarizes recognition rates by both the baseline and proposed methods.

The proposed F0-dependent method improved the recognition rates at the individual-

instrument level from 75.73% to 79.73% and at the category level from 88.20% to 90.65%

on average. It also reduced the recognition errors by 16.48% and 20.67% on average at

the individual-instrument and category levels, respectively.

We confirmed the significance of the results using t-test (one-tailed). Let the difference

of the recognition rates of the two methods for each instrument be di (i = 1, · · · , m). The

test statistic is then given by

t0 =
|d̄|√∑

i(di − d̄)2
/

m(m − 1)
,

where d̄ is the average of d1, · · · , dm. The test statistics calculated for the individual-

instrument and category levels were 5.4781 and 3.9482, respectively, and both were sta-
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Table 3.3: Accuracy by usual distribution (baseline) and F0-dependent distribution (pro-
posed).

Individual-instrument level Category level

Baseline Proposed Improv. Baseline Proposed Improv.

PF 74.21% 83.27% +9.06% 74.21% 83.27% +9.06%

CG 90.23% 90.23% ±0.00% 97.27% 97.13% −0.14%

UK 97.97% 97.97% ±0.00% 97.97% 98.31% +0.34%

AG 81.23% 83.93% +2.70% 94.89% 95.65% +0.76%

VN 69.70% 73.67% +3.97% 98.86% 99.05% +0.19%

VL 73.94% 76.27% +2.33% 93.22% 94.92% +1.70%

VC 73.48% 78.67% +5.19% 95.16% 96.24% +1.08%

TR 73.51% 82.12% +8.61% 76.82% 85.43% +8.61%

TB 76.72% 84.35% +7.63% 85.50% 89.69% +4.19%

SS 56.80% 65.89% +9.09% 73.96% 80.47% +6.51%

AS 41.49% 47.87% +6.38% 73.76% 77.66% +3.90%

TS 64.71% 66.01% +1.30% 90.20% 92.16% +1.96%

BS 66.05% 73.95% +7.90% 81.40% 86.05% +4.65%

OB 71.52% 72.19% +0.67% 75.50% 74.83% −0.67%

FG 59.61% 68.59% +8.98% 64.74% 71.15% +6.41%

CL 90.69% 92.07% +1.38% 90.69% 92.07% +1.38%

PC 77.56% 81.63% +4.07% 89.39% 90.20% +0.81%

FL 81.34% 85.07% +3.73% 82.09% 85.82% +3.73%

RC 91.88% 91.25% −0.63% 92.50% 91.25% −1.25%

Av. 75.73% 79.73% +4.00% 88.20% 90.65% +2.45%

Baseline: Usual (F0-independent) distribution

Proposed : F0-dependent distribution
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Chapter 3 F0-dependent Timbre Modeling

tistically significant with the significance level of 0.05%, where the critical region was

(3.9217,∞).

3.4.3 Discussions for PCA

The factor loadings for principal components are shown in Figure 3.5. From Figure 3.5 (a)

and (b), we can see that the first principal component is highly related to the NEPs ( 32–

40) and the temporal features ( 41– 75) while the second principal component is highly

related to harmonics-related features ( 2 – 30). It is well known that the two main factors

of musical instrument timbres are harmonics and temporal variations of power.This knowl-

edge has been confirmed by our results. The 3rd principal component is related to the

amplitudes of the temporal modulations of MFCCs and peak kurtosis features ( 82– 94 ,

119–129). The 4th principal component is related to the frequencies of MFCC modulations

( 95–107). The 5th principal component is related to MFCCs and peak kurtosis features

( 95–129). The 6th principal component is related to the amplitudes of temporal modu-

lations of MFCCs and peak kurtosis features ( 95–107, 119–129). The factor loadings for

the peak kurtosis features, which have been design to capture the degree of incorporation

of non-harmonic components, are high for a number of principal components. This result

implies the importance of dealing with non-harmonic components, which has not been

dealt with even though its importance has been pointed out

3.4.4 Discussions for LDA

The weights of the features of each category for new feature axes in the transformation

matrix obtained by combining PCA and LDA are shown in Table 3.4. Observations about

these can be summarized as follows:

1. Spectral features

In addition that the weight of RCP(1) ( 2 ) for the 9th axes were large (0.3586),

the weights of the NEPs ( 32– 40) for the 5th, 7th, 9th, and 10–13th axes were large

(0.2721–0.4363). This result matches the old knowledge that the spectra of musical

instrument sounds characterize their timbres.

2. Temporal and modulation features

The weights of the PDS (41) for the 3rd and 4th axes were large (0.5977 and

−0.2578, respectively). The weight of ADP(0.15) ( 42 ) for the 10-th axes was
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Figure 3.5: Factor loadings of PCA
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Table 3.4: Excerpt of weights of features in transformation matrix

Features and their weights

1st axes 73 (0.2701), 74 (0.3220), 75 (0.3926), 79 (−0.3204), 81 (0.2559)

2nd 40 (−0.2721), 76 (0.4425), 78 (0.3554), 82 (−0.2771),

3rd 41 (0.5977), 109 (0.2607)

4th 41 (−0.2578), 79 (−0.2917), 109 (0.2944)

5th 40 (0.4286), 78 (0.3219), 108 (0.5400)

6th 76 (−0.2755), 108 (−0.4529)

7th 40 (0.3974), 108 (−0.4576)

8th 76 (0.3378), 85 (0.2614), 108 (−0.4541)

9th 2 (0.3586), 40 (−0.2783), 84 (0.4525)

10th 40 (0.2887), 42 (−0.3200), 108 (−0.3292), 109 (0.4508)

11th 32 (0.4363), 36 (−0.2837), 109 (−0.2732)

12th 39 (0.2794), 78 (0.3174), 81 (0.2704)

13th 40 (0.3521), 120 (−0.2522)

14th 76 (−0.3484), 77 (0.4201)

−0.3200, and those of RP(0.85), RP(0.90), and RP(0.95) ( 73– 75) for the 1st axes

were between 0.2701 and 0.3926. In addition, the weights of AM- and FM-related

features ( 76– 79) for many axes were large (0.4755–0.4425). These results mean

that the temporal variations are important in instrument recognition. It is known

that the temporal variations are also important for humans’ timbre perception. For

example, it is difficult even for humans to identify instruments in the case of reverse

playback even though their stationary spectra are the same [104].

3. Peak kurtosis features

The weights of peak kurtosis features, especially 108 and 109, were high for many

axes. This implies the importance of dealing with non-harmonic components in

recognizing instruments as described in the previous section.

3.4.5 Discussions for Experimental Results

Observations about the experimental results are summarized below:
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1. The recognition rate for the piano was improved by 9.06%, and its recognition

errors were reduced by 35.13%. This big improvement was attained since their

pitch dependency is salient due to their wide range of pitch.

2. The recognition rates for the classical guitar, ukulele, and recorder were not im-

proved. This would be because there were no room to improve the recognition

rates for these instruments due to their sufficiently high recognition rates with the

baseline method.

3. The category-level recognition rates for the guitar and strings were better (94.92–

99.05%) than other instruments. This is because similar instruments did not exist in

the other categories whereas reed instruments were divided into several categories,

which makes the timbres between these categories similar.

4. The recognition rates for the four types of saxophones at the individual-instrument

level (47–73%) were lower than those at the category level (77–92%). This is be-

cause sounds of these saxophones were quite similar. In fact, Martin reported that

sounds of various saxophones are very difficult even for humans (music experts) to

discriminate [20].

3.5 Comparison with k-NN Classifier

The effect of the Bayes decision rule in musical instrument recognition was evaluated by

comparing with the k-NN rule (k-nearest neighbor rule; k = 3 in this paper) with/without

LDA. Three variations of the dimensionality reduction are examined:

(a) Reduction to 79 dimension by PCA,

(b) reduction to 18 dimension by PCA, and

(c) reduction to 18 dimension by PCA and LDA.

The last one is adopted in the proposed method.

The experimental results listed in Table 3.5 showed that the proposed Bayes decision

rule performed better in average than the 3-NN rule. Some observations are as follows:

• The Bayes decision rule with 79-dimension showed poor performance for Acoustic

Guitar (AG), Trumpet (TR), Soprano Sax (SS), Tenor Sax (TS), Oboe (OB), and
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Table 3.5: Accuracy by k-NN rule and the Bayes decision rule.

k-NN rule (k = 3) Bayes decision rule

79-Dim. 18-Dim. 79-Dim. 18-Dim.

PCA PCA&LDA PCA PCA&LDA

PF 53.94% 46.46% 63.39% 55.91% 59.06% 83.27%

CG 79.74% 77.16% 75.72% 98.28% 97.27% 90.23%

UK 94.58% 92.54% 97.63% 67.12% 80.00% 97.97%

AG 95.05% 92.79% 97.00% 19.97% 44.14% 83.93%

VN 47.73% 46.02% 45.83% 89.58% 84.47% 73.67%

VL 55.93% 54.24% 61.86% 71.19% 79.24% 76.27%

VC 86.20% 85.84% 84.23% 45.16% 30.82% 78.67%

TR 36.42% 38.41% 47.02% 41.72% 72.85% 82.12%

TB 70.99% 54.58% 77.86% 75.19% 78.24% 84.35%

SS 23.08% 14.20% 24.85% 48.52% 66.86% 65.89%

AS 37.59% 29.79% 40.43% 72.70% 41.84% 47.84%

TS 62.09% 66.01% 68.63% 30.07% 61.44% 66.01%

BS 68.84% 67.91% 66.98% 55.35% 54.42% 73.95%

OB 47.68% 48.34% 49.01% 43.71% 81.46% 72.19%

FG 64.10% 65.06% 74.36% 40.38% 30.12% 68.59%

CL 93.45% 87.93% 93.10% 95.51% 93.45% 92.07%

PC 84.08% 84.90% 84.08% 63.27% 58.37% 81.63%

FL 88.06% 72.39% 94.03% 35.82% 84.33% 85.07%

RC 97.50% 93.75% 97.50% 85.00% 96.25% 91.25%

Av. 70.27% 66.98% 72.53% 62.11% 66.50% 79.73%
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Flute (FL), since there are insufficient training data to estimate parameters of a 79-

dimensional normal distribution. For small training sets with 79-dimension, k-NN

is superior to the Bayes decision rule.

• LDA with the Bayes decision rule improved the accuracy of musical instrument

recognition from 66.50% to 79.73% on average. Although it seemed that PCA with

79-dimension performed better than LDA for Classical Guitar (CG), Violin (VN),

and Alto Sax (AS), the cumulative performance of LDA for the categories of strings

and saxophones is better than that of PCA.

• We did not conduct the experiment using only LDA. This is because LDA cannot

be applied to features that are highly correlative: the inverse matrix of the with-in

covariance, which is used by LDA, is not accurately calculated when the feature

space includes some highly correlative dimensions. Because PCA not only reduces

the dimensionality but also orthogonalizes the feature space, for our features, some

of which are highly correlative, using PCA before LDA is effective.

3.6 Comparison with Approach of Appending F0 to

Feature Vector

An alternative approach to dealing with the pitch dependency of timbres can be to append

F0s to feature vectors. We compared this approach with the proposed method in this

section. We conducted experiments on musical instrument recognition using the following

methods:

(a) Using usual (F0-independent) multivariate normal distributions without appending

F0s to feature vectors (baseline),

(b) Using usual (F0-independent) multivariate normal distributions with the 18-dimensional

feature space obtained by applying PCA and LDA to the 130-dimensional feature

space where the F0 is appended,

(c) Using 4-mixture Gaussian mixture models (GMMs) with the same feature space,

(d) Using 4-mixture GMMs with the 20-dimensional feature space to which the F0 is

appended after dimensionality reduction based on PCA and LDA,
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(e) Using 8-mixture GMMs with the same feature space,

(f) Using the proposed method.

The other experimental conditions were the same as those of Section 3.4. The experimen-

tal results are shown in Table 3.6. The results have the following tendencies:

• The average recognition rate for (f) was highest.

• Whereas there were no instruments for which the recognition rates were lowered

more than 1% in Case (f), the recognition rates for six instruments were lowered

more than 2% and those for two instruments were lowered more than 6% in Case

(e). The instruments for which the recognition rates were lowered tended to have a

small number of training data.

• When we used dimensionality reduction after appending the F0, the performance

was not improved.

3.7 Conclusion

We conclude this chapter as follows:

• We proposed a musical instrument recognition method that deals with the pitch

dependency of timbres by approximating it as a function of F0. Although the pitch

is an important factor of feature variations and is peculiar to musical instrument

sounds due to their wide pitch ranges, investigation and modeling of the relation-

ship between the pitch and feature variations have not been attempted in previous

studies.

• We explained 129 acoustic features used for musical instrument recognition. Some

features have also been commonly used in previous studies such as the spectral

centroid, but other features have not been used such as the peak kurtosis features.

Through analysis of the results of PCA and LDA, we also discussed contributions

of these features to instrument recognition.

• We reported our experimental results that attained the recognition rate of about

80% for 6,247 solo sounds of 19 instruments. The effectiveness of the F0-dependent
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Table 3.6: Results of experiments in Section 3.6 (DR: dimensionality reduction).

(a) (b) (c) (d) (e) (f)

Baseline Append F0 Append F0 Append F0 Append F0 Proposed

befor DR before DR after DR after DR

Single Gauss GMM(4mix) GMM(4mix) GMM(8mix)

PF 74.41% 72.44% 81.10% (++) 82.48% (++) 86.22% (++) 83.85% (++)

CG 90.23% 90.23% 84.91% (−) 85.06% (−) 86.06% (−) 90.23%

UK 97.97% 98.31% 95.59% (−) 97.63% 97.63% 97.97%

AG 82.43% 81.98% 81.08% 80.48% 84.98% (+) 83.33%

VN 69.89% 67.61% (−) 69.69% 70.83% 71.97% (+) 72.92% (+)

VL 74.15% 74.79% 69.70% (−) 71.82% (−) 70.97% (−) 76.69% (+)

VC 73.30% 73.78% 71.33% 72.76% 74.19% 78.67% (+)

TR 75.50% 74.83% 69.54% (−) 65.56% (−−) 70.20% (−) 82.12% (++)

TB 77.10% 79.39% (+) 85.50% (++) 80.15% (+) 86.64% (++) 85.50% (++)

SS 57.99% 58.58% 56.21% 63.91% (+) 65.09% (++) 64.50% (++)

AS 41.49% 43.97% (+) 59.22% (++) 53.90% (++) 58.51% (++) 47.52% (++)

TS 64.71% 64.71% 69.28% (+) 71.90% (++) 68.63% (+) 65.36%

BS 66.05% 65.12% 71.16% (+) 71.16% (+) 73.02% (++) 73.95% (++)

OB 72.19% 73.51% 63.58% (−−) 62.25% 64.24% (−−) 72.19%

FG 59.62% 60.90% 59.29% 66.02% (−−) 69.87% (++) 68.27% (++)

CL 90.34% 90.34% 87.59% (−) 84.48% (−) 86.55% (−) 91.38%

PC 77.96% 77.96% 81.22% (+) 80.82% (+) 86.94% (++) 81.63% (+)

FL 80.60% 81.34% 73.13% (−−) 73.13% (−−) 68.66% (−−) 85.07% (+)

RC 91.88% 89.38% (−) 88.13% (−) 90.63% 91.88% 91.25%

Av. 75.98% 75.88% 75.91% 76.38% 78.57% (+) 79.73% (+)

(++) Improved by 6% or more from the baseline.

(+) Improved by 2% or more from the baseline.

(−−) Decreased by 6% or more from the baseline.

(−) Decreased by 2% or more from the baseline.
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multivariate normal distribution was also tested by comparing it with the usual (F0-

independent) multivariate normal distribution, the k-NN classifier, and the GMM

with appending the F0 to the feature vector.
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Chapter 4

Category-level Recognition of
Non-registered Musical Instruments

This chapter points out a new problem in musical instrument recognition, called the

non-registered instrument problem, and provides a solution based on category-level recog-

nition. First, it describes construction of a musical instrument taxonomy for the category-

level recognition based on acoustic features using a large-scale musical instrument sound

database. Next, it reports experimental results of category-level recognition of non-

registered instruments based on the constructed musical instrument taxonomy.

4.1 Introduction

In this chapter, we focus on the problem of recognizing non-registered musical instruments,

that is, recognizing musical instruments that are not contained in training data. Almost

all of the previous studies have used training data containing a limited number of musical

instruments and have assumed that all the instruments used in the input were contained

in the training data. Because there are numerous kinds of musical instruments in the

world, it is impossible to prepare training data containing all of them. In addition, recent

development of digital audio technology has made it possible to create novel and infinite

kinds of original musical sounds (from sounds similar to natural instruments to sounds of

instruments that do not actually exist). It is therefore essential to deal with non-registered

musical instruments when recognizing musical instrument sounds.

To solve this problem, we propose category-level recognition of the non-registered

musical instruments. For example, a musical instrument sound that is similar to a violin

and a viola but not the same (for example, a sound made from the two instruments using

a synthesizer) is recognized as “strings.” When humans listen to this sound for the first
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Table 4.1: Conventional taxonomy of musical instruments.

Higher Middle Lower Musical

level level level instruments*

Struck strings PF

Strings —– Plucked strings CG, UK, AG

Bowed strings VN, VL, VC

Wood Air reeds PC, FL, RC

Winds winds Single reeds SS, AS, TS, BS, CL

Double reeds OB, FG

Brasses (Rip reeds) TR, TB

Percuss. (omitted) (omitted) (omitted)

*Notation of musical instruments is defined in Table 3.1.

time, they would think “I do not know this instrument, but it must be a kind of strings.”

This study aims to achieve such human-like recognition on a computer.

We also discuss a musical instrument taxonomy for this category-level recognition.

The most important requirement for the musical instrument taxonomy in category-level

recognition is that it should reflect the similarity of timbres (acoustical features). How-

ever, musical instrument taxonomies satisfying this requirement have not been reported

in the literature. We present a method for automatic acquisition of a musical instru-

ment taxonomy based on the acoustical similarity of musical instruments. We call this

TimbreTree.

4.2 TimbreTree: Musical Instrument Taxonomy based

on Acoustical Similarity

The musical instrument taxonomy for category-level recognition should reflect the timbre

similarity. In other words, two instruments that are close on the taxonomy should have

similar timbres. Most of the commonly used taxonomies, however, do not satisfy this

requirement. For example, in the taxonomy shown in Table 4.1 [105] which is designed

based on sounding mechanisms and playing methods of musical instruments, both pianos

(PF) and violins (VN) belong to the same group of “strings,” but their timbres are quite

different.
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We therefore present a method for automatic acquisition of TimbreTree, which satisfies

the above requirement, using a large musical instrument sound database. The rest of this

section discusses problems, solutions and results of automatic acquisition of TimbreTree.

4.2.1 Problems and Our Solutions

One of the most commonly used methods for acquiring a hierarchy from feature vectors is

hierarchical clustering. Hierarchical clustering first calculates distances between feature

vectors in a feature space and then merges the closest pair of feature vectors (or clusters)

into a single cluster recursively until all the feature vectors are merged into a single

cluster. This method can be applied to acquiring TimbreTree, but the following two

problems make it difficult to obtain reasonable results:

Problem 1 Clustering results depend on a feature space.

Problem 2 If one sound is used as a representative of each musical instrument, the

clustering results also depend on the choice of the representative. This is because

features of musical instrument sounds depend on various factors including pitch and

differences of individuals.

To solve Problem 1, we use the same feature space for both recognition and cluster-

ing. Since different musical instrument recognition methods would have different feature

spaces, the taxonomies appropriate for the identification methods would also be different.

Our approach makes it possible to obtain the taxonomy optimized for each recognizer. To

solve Problem 2, we apply hierarchical clustering to a multivariate normal distribution

of each instrument, which is obtained from a large musical instrument sound database. By

using a multivariate normal distribution, instead of a single sound, for each instrument,

we can obtain the appropriate representative position of the instrument in the feature

space.

4.2.2 Details of the method

TimbreTree is acquired by the following three steps:

(a) Feature Extraction

The features that are the same as those used for recognition are extracted. Since

we use a musical instrument recognition method presented in Chapter 3, we extract
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the 129 features described in Chapter 3 and then reduce dimensionality from 129

to 18 using PCA and LDA.

(b) Calculation of the Mahalanobis Distances

Once the distribution of each instrument ωi in the feature space is approximated by

an multivariate normal distribution, the mean vector μi and the covariance matrix

Σi of this distribution are calculated. The Mahalanobis distance DM(ωi, ωj) of each

instrument pair (ωi, ωj) (ωi �= ωj) is calculated by the following equation:

DM(ωi, ωj) = (μi − μj)
′Σ−1

i,j (μi − μj),

where, Σi,j = (Σi + Σj)/2, and ′ represents the transposition operator.

(c) Hierarchical Clustering

Hierarchical clustering is performed using the above Mahalanobis distances. In this

paper, we adopted the average-link clustering, which considers the distance between

two clusters to be equal to the average distance from any member of one cluster to

any member of the other.

4.2.3 Experiments on Acquisition of TimbreTree

We conducted experiments on automatic acquisition of TimbreTree using the same data as

those used in Chapter 3 (Table 3.1). The TimbreTree acquired by the proposed method is

shown in Figure 4.1. We obtained musical instrument categorization by merging musical

instrument of which distances from each other in Figure 4.1 are less than a threshold into

one cluster. Higher, middle, and lower levels in Table 4.2 show the categorization obtained

when the threshold is 30, 20, and 10, respectively. Next, we acquired TimbreTree (Figure

4.2) using only a randomly chosen half of the data in Table 3.1, which will be used as

training data in the next section. The musical instrument categorization shown in Table

4.3 was obtained from this tree similarly to the above.

4.2.4 Preliminary Experiment on Category-level Recognition of
Registered Instruments

We conducted experiments on recognizing registered instruments at the category level.

We compared the category-level recognition rates for the traditional categorization (Table
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Figure 4.1: TimbreTree obtained using the proposed method (Case of using all the data
in Table 3.1)

Table 4.2: Musical instrument categorization at three different levels obtained from Figure 4.1.

Higher Middle Lower Musical

level level level Instruments

Decayed —– Ukulele UK

Others PF, CG, AG

Strings —– VN, VL, VC

Saxophones SS, AS, TS

Sustained Clarinet CL

Woods Recorder RC

Brasses, etc. TR, TB, BS, FG

Others OB, PC, FL
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Figure 4.2: TimbreTree obtained using the proposed method (Case of using a half of the
data in Table 3.1)

Table 4.3: Musical instrument categorization at three different levels obtained from Figure 4.2.

Higher Middle Lower Musical

level level level Instruments

Decayed —– Ukulele UK

Others PF, CG, AG

Strings —– VN, VL, VC

Saxophones SS, AS, TS, BS

Sustained Clarinet CL

Woods Recorder RC

Brasses, etc. TR, TB, FG

Others OB, PC, FL
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4.1, lower-level) and our categorization (Table 4.2, Table 4.3, both lower-level). To make

the number of categories equal, the ‘single reeds’ category in Table 4.1 is divided to

the ‘saxophones’ category and the ‘clarinet’ category. We used the musical instrument

recognition method described in Chapter 3, assigning a half of the data in Table 3.1 to

training and the rest to testing. The experimental results, listed in Table 4.4, show that

the recognition rates with our categorization were higher than those with the traditional

categorization.

4.2.5 Discussions

The results of acquiring TimbreTree are summarized below:

• Division into decayed and sustained instruments

Our taxonomy divided all instruments into two categories: decayed and sustained

instruments. This division matches reports on psychological acoustics [75] and man-

ually constructed timbre-based hierarchies [20, 23]. This shows that our taxonomy

approximately reflects the timbre similarity. This is one of the major differences

between our taxonomy and a conventional one (Table 4.1).

• Categories that consist of only one instrument

Three instruments, the ukulele, the clarinet, and the recorder, each formed a cate-

gory singly at the lower level. The reason why the ukulele and the clarinet did so

is that the Mahalanobis distances between them and others are large due to their

peculiar characteristics. Ukuleles decay the fastest of the four decayed instruments.

Clarinets have small powers of even-ordered harmonic components, especially 2nd

one. On the other hand, the reason why the recorder did so is that the variance of

the recorder’s distribution is small. Recorders’ flows are fixed by the forms of the

narrow windways while flutes’ flows are fixed by the forms of the players’ lips. The

sounds of recorders, therefore, do not vary much from player to player. This is why

the variance of the recorder’s distribution was small.

• Influence of pitch range

In classifying wind instruments, instruments that have a similar pitch range tended

to be placed into the same category. This result means that the features of musical

instrument sounds depend on not only the sounding mechanisms but also the pitch.

This matches the literature on psychological acoustics [75].
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Table 4.4: Results of category-level identification of registered instruments.

Instr. Individual- Category-level

level Conv. Prop. (1) Prop. (2)

PF 80.45% 80.45% 98.12% 98.12%

CG 92.66% 96.64% 99.39% 99.39%

UK 96.73% 96.73% 96.73% 96.73%

AG 78.40% 95.73% 98.13% 98.13%

VN 71.63% 98.94% 98.94% 98.94%

VL 73.20% 92.00% 92.00% 92.00%

VC 75.18% 96.72% 96.72% 96.72%

TR 71.62% 74.32% 91.89% 82.43%

TB 74.05% 83.97% 92.37% 85.50%

SS 53.93% 78.65% 74.16% 78.65%

AS 49.17% 73.33% 69.17% 73.33%

TS 49.04% 87.50% 72.12% 87.50%

BS 67.86% 85.71% 78.57% 85.71%

OB 63.41% 70.73% 68.29% 68.29%

FG 71.23% 74.66% 75.34% 78.08%

CL 90.98% 90.98% 90.98% 90.98%

PC 80.74% 88.99% 88.99% 88.99%

FL 63.63% 66.23% 70.13% 70.13%

RC 88.88% 88.88% 88.88% 88.88%

Av. 75.98% 88.85% 90.81% 91.25%

Conv. Using the conventional categorization (Table 4.1)

Prop. (1) Using our categorization (Table 4.2, lower-level)

Prop. (2) Using our categorization (Table 4.3, lower-level)
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• Saxophones and Clarinets

Although saxophones and clarinets have single reeds, our results show that their

sounds are not similar. This is because clarinets are cylindrical while saxophones

are conical. This shape difference causes spectral differences, especially powers of

even-ordered harmonic components. While conventional taxonomies such as Table

4.1 do not take these timbre differences into consideration, our taxonomy does.

• Consistent Training Data

We confirmed from the preliminary experiments the importance of using the same

data for constructing TimbreTree and for training an instrument recognizer. Be-

cause our method for constructing TimbreTree is completely automatically per-

formed, the taxonomies can easily be switched according to training data for instru-

ment recognizers.

4.2.6 Comparison with Related Work

The automatic acquisition of a musical instrument taxonomy has not been dealt with in

previous studies.

In the field of acoustic psychology, various experiments on timbre similarities from

the viewpoint of humans’ perception have been conducted [66, 68, 73]. Such studies are

important but do not necessarily match with our purpose because appropriate timbre

similarity measures and musical instrument taxonomies for humans’ perception and those

for computational musical instrument recognition will be different.

Martin [20], Eronen and Klapuri [23], and Peeters and Rodet [50] introduced a hierar-

chical scheme to musical instrument identification. Although the taxonomies used there

partly match with ours, their taxonomies were manually designed.

Casey [106] introduced MPEG-7’s framework for describing various relations of general

sounds including musical instrument sounds as a tree structure. They, however, did not

deal with the problem of how to automatically obtain such a tree structure.

Dubnov and Tishby [107] applied hierarchical clustering to 31 sound samples extracted

from an electric instrument. They, however, used a single tone for each instrument and

thus did not take into account feature variations caused by factors such as the pitch and

the difference of individuals.
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Table 4.5: Musical instrument sounds used as non-registered instruments

Instruments Electric Piano (ElecPf)，

Synth Strings (SynStr)，

Synth Brass (SynBrs)

Variations Two for each instrument

Velocity 100

Pitch range C3–C5 (A4=440Hz)

ElecPf A ElecPf B SynStr A SynStr B SynBrs A SynBrs B
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prop.1 Using our categorization (Table 4.2, lower-level).

Figure 4.3: Results of category-level recognition of non-registered instruments.

4.3 Category-level Recognition of Non-registered Mu-

sical Instruments

In this section, we report experiments on category-level recognition of non-registered

musical instruments using the musical instrument categorization obtained by TimbreTree.

We used the sounds listed in Table 3.1 as training data and electric sounds played by a

MIDI tone generator (MU2000, Yamaha), listed in Table 4.5, as non-registered musical

instrument sounds. Because the sounds listed in Table 4.5 are not sounds of actual
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instruments, identification of the names of the instruments is impossible. The categories

of these sounds, however, should be recognized. When people who know piano sounds

listen to electric piano sounds for the first time, for example, they may judge that the

sounds belong to the same category as the piano sounds even if they cannot identify the

instrument name. The aim of the experiments here is to implement such judgment on a

computer.

4.3.1 Category-level Recognition of Non-registered Instruments

We assigned all data in Table 3.1 to training and all data in Table 4.5 to testing, and

conducted the experiment of recognizing the test data at the category level. Two kinds

of categorization, i.e., conventional categorization based on the sounding mechanisms

(Table 4.1) and automatically generated categorization based on TimbreTree (Table 4.2,

lower-level), were used.

The results are shown in Table 4.3. The recognition rates using TimbreTree were be-

tween 75 and 100% while the recognition rates using the conventional taxonomy were very

low except for synth strings. The recognition rates using TimbreTree for all instruments

were better than or equal to those using the conventional taxonomy. These results suggest

that the sounding-mechanism-based categorization is unsuitable for electric sounds, since

they do not have sounding mechanisms.

4.3.2 Determination of Whether Instruments Are Registered or
Not

While non-registered instruments should be recognized at the category level, registered

instruments should be recognized at the individual-instrument level. It means that the

level of recognition should be switched and therefore it is required to determine whether

the instruments of given signals are registered or not. This is equivalent to rejection

of recognition results at the individual-instrument level and is performed through the

following steps:

( 1 ) Identify the instrument of a given sound at the individual-instrument level.

( 2 ) Calculate the Mahalanobis distance from the given sound to the distribution of the

above result.
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( 3 ) Judge it to be registered if the distance is less than a threshold, or non-registered if

the distance is not.

To calculate the Mahalanobis distance, (a) the 23-dimensional feature space obtained by

PCA (proportion value: 90%), (b) the 18-dimensional feature space obtained by PCA

(proportion value: 88%), and (c) the 18-dimensional feature space obtained by both PCA

and LDA (same as that used in Chapter 3) were used. We assigned a half of the data in

Table 3.1 to training data, the rest to test data of registered instruments, and all of the

data in Table 4.5 to test data of non-registered instruments.

Experimental results are listed in Table 4.6. In Case (a), the rate of correct determi-

nation was 85% when the threshold was 40. The rate of correctly determining registered

instruments and the rate of correctly determining non-registered instruments have a trade-

off relation in general, and the average of the two rates were mostly between 80 and 85%

in Case (a).

When we focus on the threshold where the rate of correctly determining registered

instruments was 85 or 86%, the rate of correctly determining non-registered instruments

was 85% (highest) in Case (a) and 71% (lowest) in Case (c). Even though LDA is effective

for classification of registered instruments, as shown in Chapter 3, it is not necessarily

effective for classification of registered and non-registered instruments.

The sounds of ElecPf A were often mistakenly determined, i.e., determined as a regis-

tered instrument. This is because these sounds were comparatively similar to real piano

sounds. In fact, they were difficult even for humans to distinguish.

4.3.3 Flexible Musical Instrument Recognition

We finally present results of flexible musical instrument recognition, that is, individual-

instrument-level recognition for registered instruments and category-level recognition for

non-registered instruments. Similarly to the previous experiment, we assigned a half of

the data in Table 3.1 to training data, the rest to test data of registered instruments,

and all of the data in Table 4.5 to test data of non-registered instruments. We used the

23-dimensional feature space (Case (a)) for registered/non-registered determination. The

threshold was 40. The experimental results listed in Table 4.7 show that our method

correctly recognized 66.62% of registered instrument sounds at the individual-instrument

level, 13.16% at the category level, and 77.33% of non-registered instrument sounds at the

category level while distinguishing them from registered instrument sounds. The average
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Table 4.6: Results of determination of registered/non-registered instruments.

Dim. Reduction* (a) PCA(23) (b) PCA(18) (c) PCA+LDA(18)

Threshold 50 40 30 25 40 30 25 40 30 25

PF 92% 86% 79% 71% 93% 84% 79% 88% 82% 71%

CG 94% 90% 83% 77% 95% 89% 86% 97% 92% 85%

UK 86% 82% 68% 63% 87% 81% 73% 88% 82% 73%

AG 91% 86% 80% 75% 90% 83% 80% 92% 86% 78%

VN 91% 86% 73% 61% 94% 85% 76% 94% 84% 73%

VL 95% 94% 79% 70% 97% 95% 85% 97% 93% 86%

VC 96% 93% 89% 79% 97% 93% 92% 99% 94% 87%

TR 94% 87% 70% 60% 96% 89% 79% 96% 92% 50%

Regis- TB 92% 86% 75% 66% 95% 89% 84% 97% 91% 84%

tered SS 96% 88% 73% 54% 96% 85% 71% 96% 94% 85%

AS 88% 81% 58% 50% 92% 86% 76% 88% 80% 71%

TS 80% 62% 46% 34% 80% 78% 70% 88% 70% 58%

BS 88% 73% 63% 51% 92% 77% 69% 88% 77% 82%

OB 87% 75% 65% 54% 87% 79% 71% 98% 85% 61%

FG 85% 78% 68% 64% 87% 78% 74% 89% 78% 67%

CL 92% 77% 67% 52% 90% 85% 80% 98% 90% 76%

PC 90% 82% 67% 55% 92% 83% 77% 82% 73% 35%

FL 88% 71% 47% 37% 96% 80% 50% 100% 88% 40%

RC 91% 81% 69% 53% 94% 81% 72% 95% 90% 59%

Av. 91% 85% 74% 65% 93% 86% 79% 94% 86% 72%

ElecPf A 36% 44% 64% 76% 32% 36% 36% 24% 44% 48%

ElecPf B 52% 84% 88% 92% 36& 52% 55% 36% 60% 76%

Non SynStr A 100% 100% 100% 100% 100% 100% 100% 56% 88% 92%

regis- SynStr B 100% 100% 100% 100% 100% 100% 100% 40% 60% 100%

tered SynBrs A 76% 80% 88% 92% 72% 84% 88% 72% 80% 84%

SynBrs B 100% 100% 100% 100% 100% 100% 100% 76% 96% 100%

Av. 77% 85% 90% 93% 73% 79% 81% 51% 71% 83%

*The values in the parentheses following the names of dimensionality reduction methods
are the number of dimensions after the reduction.
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error rates for registered and non-registered instruments were therefore 20.22 and 22.67%,

respectively.

4.3.4 Discussions

Contributions and remaining issues are summarized as follows:

• We achieved recognition like “I do not the instrument name but it must be a kind

of strings.” This approach is effective for not only annotation of a variety of musical

sounds but also other applications such as music transcription. When an input signal

contains both piano sounds and piano-like but non-registered instrument sounds

(e.g., electric piano), previous music transcription systems could not distinguish

them. Our method has made it possible to distinguish them by recognizing non-

registered instruments at the category level.

• This approach will also be effective for multimedia integration. Suppose that a

system recognized a musical instrument for annotating a motion picture of a music

performance and its result through auditory features was “the instrument name

is unknown but it is a kind of strings.” If the system recognizes the name of this

instrument through visual features, our approach is applicable to re-train the sounds

of this instrument as a new instrument belonging to the strings category.

• Although the lower-level categories were used in all experiments, the granularity of

categorization should be appropriately determined according to applications. Future

work will include development of a method for determining the threshold used for

obtaining categories from TimbreTree according to applications.

• Whereas the aim of this study was acquisition of a musical instrument taxonomy

optimized for computational recognition, taxonomies for specifying instrument cat-

egories by humans should match with humans’ intuition. We therefore plan to

construct a musical instrument taxonomy based on humans’ intuition using the

results of acoustic psychology studies and develop a method for converting them.

The problem of the conversion between different taxonomies representing the same

concept is known as the ontology problem or semantic mapping problem [108].
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Table 4.7: Results of handling both registered and non-registered instruments.

Correct (a) Correct (b) Incorrect

PF 68.80% 17.29% 13.91%

CG 83.49% 11.62% 4.89%

UK 96.73% —– 3.27%

AG 68.27% 14.40% 17.33%

VN 61.70% 13.82% 24.48%

VL 68.80% 11.20% 20.00%

VC 69.71% 9.85% 20.44%

TR 63.51% 14.86% 21.63%

TB 63.36% 16.79% 19.85%

SS 47.19% 11.24% 41.57%

AS 40.00% 16.67% 43.33%

TS 29.81% 25.96% 44.23%

BS 49.11% 19.64% 31.25%

OB 47.56% 19.51% 32.93%

FG 56.16% 16.44% 27.40%

CL 90.98% —– 9.02%

PC 66.06% 17.43% 16.51%

FL 45.45% 19.48% 35.07%

RC 88.88% —– 11.12%

Av. 66.62% 13.16% 20.22%

ElecPf A —– 44.00% 56.00%

ElecPf B —– 76.00% 24.00%

SynStr A —– 88.00% 12.00%

SynStr B —– 100.00% 0.00%

SynBrs A —– 60.00% 40.00%

SynBrs B —– 96.00% 4.00%

Av. —– 77.33% 22.67%

Correct (a) correct at the individual-instrument level

Correct (b) correct at the category-level while rejecting

the individual-instrument-level result
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4.4 Conclusion

In this paper, we described a new approach for dealing with non-registered instruments

based on category-level recognition. The conclusions of this chapter are summarized as

follows:

• We pointed out a new problem in musical instrument recognition, that is, non-

registered instruments. Although the problem of non-registered instruments is in-

evitable for annotating real-world musical audio signals, it has not been dealt with

in previous studies.

• We proposed category-level recognition as a solution to the above-mentioned prob-

lem. This approach aims at implementing human-like flexible instrument recognition

such as “I have not heard the sounds of this instrument but it may be a kind of

strings.” It therefore has a wide range of potentials, as discussed in Section 4.3.4,

as well as musical instrument annotation.

• We proposed a method for automatically acquiring a musical instrument taxon-

omy optimized for computational category-level instrument recognition. Although

category-level recognition of (registered) musical instruments based on a musical

instrument taxonomy has been attempted in previous studies [20, 23, 50], the taxon-

omy used was manually designed.
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Chapter 5

Feature Weighting based on
Mixed-sound Template for
Polyphonic Music

This chapter aims to discuss how to achieve robust instrument recognition with respect

to polyphonic music. We first describe that extraction of harmonic structures suppresses

the influence of interfering notes. We then point out that the suppression by harmonic

structure extraction is insufficient and propose a method of feature weighting to minimize

the influence. We also present a method of using musical context for further improvement.

5.1 Introduction

In this chapter, we deal with instrument recognition in polyphonic music. The main diffi-

culty in recognizing instruments in polyphonic music is the fact that acoustical features of

each instrument cannot be extracted without blurring because of the overlapping of par-

tials (harmonic components). Here, we approach this overlapping problem by weighting

each feature based on how much the feature is affected by the overlapping. If we can give

higher weights to features suffering less from this problem and lower weights to features

suffering more, it will facilitate robust instrument recognition in polyphonic music. To

do this, we quantitatively evaluate the influence of the overlapping on each feature as

the ratio of the within-class variance to the between-class variance in the distribution of

training data obtained from polyphonic sounds because greatly suffering from the overlap-

ping means having large variation when polyphonic sounds are analyzed. This evaluation

makes the feature weighting described above equivalent to dimensionality reduction using

linear discriminant analysis (LDA) on training data obtained from polyphonic sounds.
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Because LDA generates feature axes using a weighted mixture where the weights minimize

the ratio of the within-class variance to the between-class variance, using LDA on training

data obtained from polyphonic sounds generates a subspace where the influence of the

overlapping problem is minimized. We call this method DAMS (discriminant analysis with

mixed sounds). In previous studies, techniques such as time-domain waveform template

matching [37], feature adaptation with manual feature classification [38], and the missing

feature theory [39, 40] have been tried to cope with the overlapping problem, but no at-

tempts have been made to give features appropriate weights based on their robustness to

the overlapping.

In addition, we propose a method for improving instrument recognition using musical

context. This method is aimed at avoiding musically unnatural errors by considering

the temporal continuity of melodies; for example, if the identified instrument names of a

sequential note sequence are all “flute” except for one “clarinet,” this exception can be

considered an error and corrected.

5.2 Notewise Musical Instrument Recognition for Poly-

phonic Music

In instrument recognition in this chapter, the instrument for each note is identified. Sup-

pose that a given audio signal contains K notes, n1, n2, · · · , nk, · · · , nK . The recognition

process has two basic subprocesses: feature extraction and a posteriori probability cal-

culation. In the former process, a feature vector consisting of some acoustic features is

extracted from the given audio signal for each note. Let xk be the feature vector extracted

for note nk. In the latter process, for each of the target instruments, ω1, · · · , ωm, the prob-

ability p(ωi|xk) that the feature vector xk is extracted from a sound of the instrument ωi

is calculated. Based on the Bayes theorem, p(ωi|xk) can be expanded as follows:

p(ωi|xk) =
p(xk|ωi)p(ωi)

m∑
j=1

p(xk|ωj)p(ωj)

,

where p(xk|ωi) is a probability density function (PDF) and p(ωi) is the a priori probability

with respect to the instrument ωi. The PDF p(xk|ωi) is trained using data prepared in

advance. Finally, the name of the instrument maximizing p(ωi|xk) is determined for each

note nk.
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5.3 Feature Weighting based on Mixed-sound Tem-

plate

In this section, we discuss how to design an instrument recognition method that is ro-

bust to the overlapping of sounds. First, we explain that extracting harmonic structures

effectively suppresses the influence of other simultaneously played notes. Next, we point

out that harmonic structure extraction is insufficient and propose a method for feature

weighting to improve the robustness.

5.3.1 Use of Harmonic Structure Model

In speech recognition and speaker recognition studies, features of spectral envelopes such

as mel-frequency cepstrum coefficients are commonly used. Although they can reasonably

represent the general shapes of observed spectra, when a signal of multiple instruments

simultaneously playing is analyzed, focusing on the component corresponding to each in-

strument from the observed spectral envelope is difficult. Because most musical sounds

except percussive ones have harmonic structures, previous studies on instrument recogni-

tion [38, 46, 109] have commonly extracted the harmonic structure of each note and then

extracted acoustic features from the structures.

We also extract the harmonic structure of each note and then extract acoustic features

from the structure. The harmonic structure model H(nk) of the note nk can be represented

as the following equation:

H(nk) = {(Fi(t), Ai(t)) | i=1,2,· · ·,h, 0≤t≤T} ,

where Fi(t) and Ai(t) are the frequency and amplitude of the i-th partial at time t.

Frequency is represented by relative frequency where the temporal median of the funda-

mental frequency, F1(t), is 1. Above, h is the number of harmonics, and T is the note

duration. This modeling of musical instrument sounds based on harmonic structures can

restrict the influence of the overlapping of sounds of multiple instruments to the over-

lapping of partials. Although actual musical instrument sounds contain non-harmonic

components, which can be factors characterizing sounds, we focus only on harmonic ones

because non-harmonic ones are difficult to reliably extract from a mixture of sounds.
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5.3.2 Feature Weighting based on Robustness to Overlapping of
Sounds

As described in the previous section, the influence of the overlapping of sounds of multiple

instruments is restricted to the overlapping of the partials by extracting the harmonic

structures. If two notes have no partials with common frequencies, the influence of one

on the other when the two notes are simultaneously played may be ignorably small. In

practice, however, partials often overlap. When two notes with the pitches of C4 (about

262Hz) and G4 (about 394Hz) are simultaneously played, for example, the 3i-th partials

of the C4 note and the 2i-th partials of the G4 note overlap for every natural number i.

Because note combinations that can generate harmonious sounds cause overlaps in many

partials in general, coping with the overlapping of partials is a serious problem.

One effective approach for coping with this overlapping problem is feature weighting

based on the robustness to the overlapping problem. If we can give higher weights to

features suffering less from this problem and lower weights to features suffering more, it

will facilitate robust instrument recognition in polyphonic music. Concepts similar to this

feature weighting, in fact, have been proposed, such as the missing feature theory [39, 40]

and feature adaptation [38].

• Eggink and Brown [39, 40] applied the missing feature theory to the problem of

recognizing instruments in polyphonic music. This is a technique for cancelling

unreliable features using a vector called a mask, which represents whether each

feature is reliable or not. Because masking a feature is equivalent to giving a weight

of zero to it, this technique can be considered an implementation of the feature

weighting concept. Although this technique is known to be effective if the features

to be masked are given, automatic mask estimation is very difficult in general and

has not yet been established.

• Kinoshita et al. [38] proposed a feature adaptation method. They manually classi-

fied their features for recognition into three types (additive, preferential, and fragile)

according to how the features varied when partials overlapped. Their method re-

calculates or cancels the features extracted from overlapping components according

to the three types. Similarly to Eggink’s work, cancelling features can be consid-

ered an implementation of the feature weighting concept. Because this method

requires manually classifying features in advance, however, using a variety of fea-
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Figure 5.1: Overview of process of constructing mixed-sound template.

tures is difficult. They introduced a feature weighting technique, but this technique

was performed on monophonic sounds and hence did not cope with the overlapping

problem.

• Otherwise, there has been Kashino’s work based on a time-domain waveform template-

matching technique with adaptive template filtering [37]. The aim was the robust

matching of an observed waveform and a mixture of waveform templates by adap-

tively filtering the templates. This study, therefore, did not deal with feature weight-

ing based on the influence of the overlapping problem.

The issue in the feature weighting described above is how to quantitatively design

the influence of the overlapping problem. Because training data were obtained only from

monophonic sounds in previous studies, this influence could not be evaluated by analyzing

the training data. Our DAMS method quantitatively models the influence of the overlap-

ping problem on each feature as the ratio of the within-class variance to the between-class

variance in the distribution of training data obtained from polyphonic sounds. This

modeling makes weighting features to minimize the influence of the overlapping problem

equivalent to applying LDA to training data obtained from polyphonic sounds.

Training data are obtained from polyphonic sounds through the process shown in

Figure 5.1. The sound of each note in the training data is labeled in advance with the

instrument name, the F0, the onset time, and the duration. By using these labels, we

extract the harmonic structure corresponding to each note from the spectrogram. We

then extract acoustic features from the harmonic structure. We thus obtain a set of many
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feature vectors, called a mixed-sound template, from polyphonic sound mixtures.

The main issue in constructing a mixed-sound template is to design an appropriate

subset of polyphonic sound mixtures. This is a serious issue because there are an infinite

number of possible combinations of musical sounds due to the large pitch range of each

instrument1. The musical feature that is the key to resolving this issue is a tendency

of intervals of simultaneous notes. In Western tonal music, some intervals such as minor

2nds are more rarely used than other intervals such as major 3rds and perfect 5ths because

minor 2nds generate dissonant sounds in general. By generating polyphonic sounds for

template construction from the scores of actual (existing) musical pieces, we can obtain

a data set that reflects the tendency mentioned above2. We believe that this approach

improves instrument identification even if the pieces used for template construction are

different from the piece to be identified for the following two reasons:

• There are different distributions of intervals found in simultaneous sounding notes

in tonal music. For example, three simultaneous notes with the pitches of C4, C#4,

and D4 are rarely used except for special effects.

• Because we extract the harmonic structure from each note, as previously mentioned,

the influence of multiple instruments simultaneously playing is restricted to the

overlapping of partials. The overlapping of partials can be explained by two main

factors: which partials are affected by other sounds, related to note combinations,

and how much each partial is affected, mainly related to instrument combinations.

Note combinations can be reduced because our method considers only relative-pitch

relationships, and the lack of instrument combinations is not critical to recognition

as we find in an experiment described below. If the intervals of note combinations

in a training data set reflect those in actual music, therefore, the training data set

will be effective despite a lack of other combinations.

1Because our data set of musical instrument sounds consists of 2,651 notes of five instruments,
C(2651, 3) ≈ 3.1 billion different combinations are possible even if the number of simultaneous voices
is restricted to three. About 98 years would be needed to train all the combinations, assuming that one
second is needed for each combination.

2Although this discussion is based on tonal music, this may be applicable to atonal music by preparing
the scores of pieces of atonal music.
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Figure 5.2: Example of musically unnatural errors. This example is excerpt from results
of recognizing each note individually in piece of trio music. Marked notes are musically
unnatural errors, which can be avoided by using musical context. PF, VN, CL and FL
represent piano, violin, clarinet and flute.

5.4 Use of Musical Context

In this section, we propose a method for improving instrument recognition by considering

musical context. The aim of this method is to avoid unusual events in tonal music, for

example, only one clarinet note appearing in a sequence of notes (a melody) played on a

flute, as shown in Figure 5.2. As mentioned in Section 5.2, the a posteriori probability

p(ωi|xk) is given by p(ωi|xk) = p(xk|ωi)p(ωi)/
∑

j p(xk|ωj)p(ωj). The key idea behind

using musical context is to apply the a posteriori probabilities of nk’s temporally neigh-

boring notes to the a priori probability, p(ωi), of the note nk (Figure 5.3). This is based

on the idea that, if almost all notes around the note nk are recognized as the instrument

ωi, nk is also probably played on ωi. To achieve this, we have to resolve the following

issue:
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Chapter 5 Feature Weighting based on Mixed-sound Template

Figure 5.3: Key idea for using musical context. To calculate a posteriori probability of
note nk, a posteriori probabilities of temporally neighboring notes of nk are used.

Issue Distinguishing notes played on the same instrument as nk from neighboring notes.

Because various instruments are played at the same time, an recognition system

has to distinguish notes that are played on the same instrument as the note nk

from notes played on other instruments. This is not easy because it is mutually

dependent on musical instrument recognition.

We resolve this issue as follows:

Solution Take advantage of the parallel movement of simultaneous parts.

In Western tonal music, voices rarely cross. This may be explained due to the

human’s ability to recognize multiple voices easier if they do not cross each other

in pitch [54]. When they listen, for example, to two simultaneous note sequences

that cross, one of which is descending and the other of which is ascending, they

cognize them as if the sequences approach each other but never cross. Huron also

explains that the pitch-crossing rule (parts should not cross with respect to pitch) is

a traditional voice-leading rule and can be derived from perceptual principles [110].

We therefore judge whether two notes, nk and nj, are in the same part (i.e., played on

the same instrument) as follows: Let sh(nk) and sl(nk) be the maximum number of

simultaneously played notes in the higher and lower pitch ranges when the note nk is

being played. Then, the two notes, nk and nj, are considered to be in the same part if

and only if sh(nk) = sh(nj) and sl(nk) = sl(nj) (Figure 5.4). Kashino et al. [37] have

introduced musical role consistency to generate music streams. They have designed
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Figure 5.4: Example of judgment of whether notes are played on same instrument. Each
tuple (a, b) represents sh(nk) = a and sl(nk) = b.

two kinds of musical roles: the highest and lowest notes (usually corresponding to

the principal melody and bass lines). Our method can be considered an extension

of their musical role consistency.

[1st pass] Pre-calculation of a posteriori probabilities

For each note nk, the a posteriori probability, p(ωi|xk), is calculated by considering the a

priori probability, p(ωi), to be a constant because the a priori probability, which depends

on the a posteriori probabilities of temporally neighboring notes, cannot be determined

in this step.

[2nd pass] Re-calculation of a posteriori probabilities

This pass consists of three steps:

(1) Finding notes played on same instrument

Notes that satisfy {nj | sh(nk) = sh(nj) ∩ sl(nk) = sl(nj)} are extracted from notes

temporally neighboring nk. This extraction is performed from the nearest note to

farther notes and stops when c notes has been extracted (c is a positive integral

constant). Let N be the set of the extracted notes.

(2) Calculating a priori probability

The a priori probability of the note nk is calculated based on the a posteriori prob-
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abilities of the notes extracted in the previous step. Let p1(ωi) and p2(ωi) be the

a priori probabilities calculated from musical context and other cues, respectively.

Then, we define the a priori probability, p(ωi), to be calculated here as follows:

p(ωi) = λp1(ωi) + (1 − λ)p2(ωi),

where λ is a confidence measure of musical context. Although this measure can be

calculated through statistical analysis as the probability that the note nk will be

played on instrument ωi when all the extracted neighboring notes of nk are played

on ωi, we use λ = 1 − (1/2)c for simplicity, where c is the number of notes in N .

This is based on the heuristics that as more notes are used to represent a context,

the context information is more reliable. We define p1(ωi) as follows:

p1(ωi) =
1

α

∏
nj∈N

p(ωi|xj),

where xj is the feature vector for the note nj and α is the normalizing factor given

by α =
∑

ωi

∏
nj

p(ωi|xj). We use p2(ωi) = 1/m for simplicity.

(3) Updating a posteriori probability

The a posteriori probability is re-calculated using the a priori probability calculated

in the previous step.

5.5 Details of Our Instrument Recognition Method

The details of our instrument recognition method are given below. An overview is shown

in Figure 5.5. First, the spectrogram of a given audio signal is generated. Next, the

harmonic structure of each note is extracted based on data on the F0, the onset time, and

the duration of each note, which are estimated in advance using an existing method (e.g.,

[9, 46, 109]). Then, feature extraction, dimensionality reduction, a posteriori probability

calculation, and instrument determination are performed in that order.

5.5.1 Short-time Fourier Transform

The spectrogram of the given audio signal is calculated using the short-time Fourier

transform (STFT) shifted by 10 ms (441 points at 44.1 kHz sampling) with an 8192-point

Hamming window.
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Figure 5.5: Flow of our instrument recognition method.
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5.5.2 Harmonic Structure Extraction

The harmonic structure of each note is extracted according to note data estimated in

advance. Spectral peaks corresponding to the first 10 harmonics are extracted from the

onset time to the offset time. The offset time is calculated by adding the duration to the

onset time. Then, the frequency of the spectral peaks is normalized so that the temporal

mean of F0 is 1.

Next, the harmonic structure is trimmed because training and recognition require

notes with fixed durations. Because a mixed-sound template with a long duration is more

stable and robust than a template with a short one, trimming a note to keep it as long

as possible is best. We therefore prepare three templates with different durations (300,

450, and 600ms), and the longest usable, as determined by the actual duration of each

note, is automatically selected and used for training and recognition3. For example, the

450-ms template is selected for a 500-ms note. In this paper, the 300-, 450-, and 600-ms

templates are called Template Types I, II, and III. Notes shorter than 300 ms are not

recognized.

5.5.3 Feature Extraction

Features that are useful for recognition are extracted from the harmonic structure of each

note. We basically use the same feature set as that used in Chapters 3 and 4, but remove

some features due to the difficulty of extraction from a mixture of sounds. We therefore

use the 43 features (for Template Type III) summarized in Table 5.1, which we expected

to be robust with respect to a mixture of sounds. We use 37 features for Template Type

II and 31 for I because of the limitations of the note durations.

5.5.4 Dimensionality Reduction

Using the DAMS method, the subspace minimizing the influence of the overlapping prob-

lem is obtained. Because a feature space should not be correlated to robustly perform the

LDA calculation, before using the DAMS method, we obtain a non-correlative space by

using principal component analysis (PCA). The dimensions of the feature space obtained

with PCA is determined so that the cumulative proportion value is 99% (20 dimensions

3The template is selected based on the fixed durations instead of the tempo because temporal variations
of spectra, which influence the dependency of features on the duration, occur on the absolute time scale
rather than in the tempo.
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Table 5.1: Overview of 43 features. Please see Section 3.3.2 for the exact definitions.

Spectral features

1 Spectral centroid (SC)

2 – 10 Relative cumulative powers (RCP) (up to the 9th partials)

11 Odd/even power ratio (OER)

12– 20 Number of stably existing partials (NEP)

Temporal features

21 Power decay speed (PDS)

22– 30* Average differential of power envelope (ADP)

31– 39* Relative powers (RP)

Modulation features

40 , 41 Amplitude and frequency of AM

42, 43 Amplitude and frequency of FM

Note: The feature numbers are unrelated to the feature numbers in Chapter 3.
*While the original definition in Section 3.3.2 includes t with the values from 0.15 to 0.95,
The values of t are here up to 0.25, 0.40, and 0.55 for Template Types I, II, and III,
respectively, due to the limitations of the note durations.

in most cases). By using the DAMS method in this subspace, we obtain an (m − 1)-

dimensional space (m: the number of instruments in the training data).

5.5.5 A Posteriori Probability Calculation

For each note nk, the a posteriori probability, p(ωi|xk), is calculated. As previously

described, this probability can be calculated using the following equation:

p(ωi|xk) =
p(xk|ωi)p(ωi)∑

j

p(xk|ωj)p(ωj)
.

The PDF p(xk|ωi) is calculated from training data prepared in advance by using an F0-

dependent multivariate normal distribution, which is proposed in Chapter 3. For each

element of the feature vector, the pitch dependency of The a priori probability, p(ωi), is

calculated on the basis of the musical context, that is, the a posteriori probabilities of

neighboring notes, as described in Section 3.

85



Chapter 5 Feature Weighting based on Mixed-sound Template

5.5.6 Instrument Determination

Finally, the instrument maximizing the a posteriori probability p(ωi|xk) is determined as

the recognition result for the note nk.

5.6 Experiments

5.6.1 Data for Experiments

We used audio signals generated by mixing audio data taken from a solo musical instru-

ment sound database according to standard MIDI files (SMFs) so that we would have

correct data on F0s, onset times, and durations of all notes because the focus of our ex-

periments was solely on evaluating the performance of our instrument recognition method

by itself.

The SMFs we used in the experiments were three pieces taken from RWC-MDB-C-2001

(Piece Nos. 13, 16, and 17) [111]. These are classical musical pieces consisting of four or

five simultaneous voices. We created SMFs of duo, trio, and quartet music by choosing

two, three, and four simultaneous voices from each piece. We also prepared solo-melody

SMFs for template construction.

As audio sources for generating audio signals of duo, trio, and quartet music, an

excerpt of RWC-MDB-I-2001 [103], listed in Table 5.2, was used. To avoid using the

same audio data for training and testing, we used 011PFNOM, 151VNNOM, 311CLNOM,

and 331FLNOM for the test data and the others in Table 5.2 for the training data. We

prepared audio signals of all possible instrument combinations within the restrictions in

Table 5.3, which was defined by taking the pitch ranges of instruments into account. For

example, 48 different combinations were made for quartet music.

5.6.2 Experiment 1: Leave-one-out

The experiment was conducted using the leave-one-out cross-validation method. When

evaluating a musical piece, a mixed-sound template was constructed using the remaining

two pieces. Because we evaluated three pieces, we constructed three different mixed-

sound templates by dropping the piece used for testing. The mixed-sound templates were

constructed from audio signals of solo and duo music (S+D) and solo, duo, and trio music

(S+D+T). For comparison, we also constructed a template, called a solo-sound template,

only from solo musical sounds. The number of notes in each template is listed in Table
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Table 5.2: Audio data on solo instruments

Instr. Name Pitch Vari- Dynam- Articu- # of

no. range ation ics lation data

01 Piano (PF) A0–C8 1, 2, 3 Forte, 792

09 Classical Guitar (CG) E2–E5 ′′ mezzo Normal 702

15 Violin (VN) G3–E7 ′′ & only 576

31 Clarinet (CL) D3–F6 ′′ piano 360

33 Flute (FL) C4–C7 1, 2 221

Table 5.3: Instrument candidates for each part.

Part 1 PF, VN, FL

Part 2 PF, CG, VN, CL

Part 3 PF, CG

Part 4 PF, CG

5.4. To evaluate the effectiveness of F0-dependent multivariate normal distributions and

using musical context, we tested both cases with and without each technique. We fed the

correct data on the F0s, onset times, and durations of all notes because our focus was on

the performance of the instrument recognition method alone.

The results are shown in Table 5.5. Each number in the table is the average of

the recognition rates for the three pieces. Using the DAMS method, the F0-dependent

multivariate normal distribution, and the musical context, we improved the recognition

rates from 50.9 to 84.1% for duo, from 46.1 to 77.6% for trio, and from 43.1 to 72.3% for

quartet music on average.

We confirmed the effect of each of the DAMS method (mixed-sound template), the

F0-dependent multivariate normal distribution, and the musical context using McNemar’s

test. McNemar’s test is usable for testing whether the proportions of A-labeled (“correct”

in this case) data to B-labeled (“incorrect”) data under two different conditions are sig-

nificantly different. Because the numbers of notes are different among instruments, we

sampled 100 notes at random for each instrument to avoid the bias. The results of Mc-

Nemar’s test for the quartet music are listed in Table 5.6 (those for the trio and duo

music are omitted but are basically same as those for the quartet), where the χ2
0 are test
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Table 5.4: Number of notes in mixed-sound templates (Type I). Templates of Types II
and III have about 1/2 and 1/3–1/4 times the notes of Type I (details are omitted due
to a lack of space). S+D and S+D+T stand for the templates constructed from audio
signals of solo and duo music, and from those of solo, duo, and trio music, respectively.

S+D S+D+T Subset*

PF 31,334 83,491 24,784

CG 23,446 56,184 10,718

No. 13 VN 14,760 47,087 9,804

CL 7,332 20,031 4,888

FL 4,581 16,732 3,043

PF 26,738 71,203 21,104

CG 19,760 46,924 8,893

No. 16 VN 12,342 39,461 8,230

CL 5,916 16,043 3,944

FL 3,970 14,287 2,632

PF 23,836 63,932 18,880

CG 17,618 42,552 8,053

No. 17 VN 11,706 36,984 7,806

CL 5,928 16,208 3,952

FL 3,613 13,059 2,407

*Template used in Experiment III.

statistics. Because the criterion region at α = 0.001 (which is the level of significance) is

(10.83, +∞), the differences except S+D vs. S+D+T are significant at α = 0.001.

Other observations are summarized as follows:

• The results of the S+D and S+D+T templates were not significantly different even if

the test data were from quartet music. This means that constructing a template from

polyphonic sounds is effective even if the sounds used for the template construction

do not have the same complexity as the piece to be recognized.

• For PF and CG, the F0-dependent multivariate normal distribution was particularly

effective. This is because these instruments have large pitch dependencies due to

their wide pitch ranges.
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Table 5.5: Results of Experiment 1.
Template Solo-sound S+D S+D+T

F0-dpt. × × © © × × © © × × © ©
Context × © × © × © × © × © × ©

PF 53.7% 63.0% 70.7% 84.7% 61.5% 63.8% 69.8% 78.9% 69.1% 70.8% 71.0% 82.7%

CG 46.0% 44.6% 50.8% 42.8% 50.9% 67.5% 70.2% 85.1% 44.0% 57.7% 71.0% 82.9%

Duo VN 63.7% 81.3% 63.1% 75.6% 68.1% 85.5% 70.6% 87.7% 65.4% 84.2% 67.7% 88.1%

CL 62.9% 70.3% 53.4% 56.1% 81.8% 92.1% 81.9% 89.9% 84.6% 95.1% 82.9% 92.6%

FL 28.1% 33.5% 29.1% 38.7% 67.6% 84.9% 67.6% 78.8% 56.8% 70.5% 61.5% 74.3%

Av. 50.9% 58.5% 53.4% 59.6% 66.0% 78.8% 72.0% 84.1% 64.0% 75.7% 70.8% 84.1%

PF 42.8% 49.3% 63.0% 75.4% 44.1% 43.8% 57.0% 61.4% 52.4% 53.6% 61.5% 68.3%

CG 39.8% 39.1% 40.0% 31.7% 52.1% 66.8% 68.3% 82.0% 47.2% 62.8% 68.3% 82.8%

Trio VN 61.4% 76.8% 62.2% 72.5% 67.0% 81.8% 70.8% 83.5% 60.5% 80.6% 68.1% 82.5%

CL 53.4% 55.7% 46.0% 43.9% 69.5% 77.1% 72.2% 78.3% 71.0% 82.8% 76.2% 82.8%

FL 33.0% 42.6% 36.7% 46.5% 68.4% 77.9% 68.1% 76.9% 59.1% 69.3% 64.0% 71.5%

Av. 46.1% 52.7% 49.6% 54.0% 60.2% 69.5% 67.3% 76.4% 58.0% 69.8% 67.6% 77.6%

PF 38.9% 46.0% 54.2% 64.9% 38.7% 38.6% 50.3% 53.1% 46.1% 46.6% 53.3% 57.2%

CG 34.3% 33.2% 35.3% 29.1% 51.2% 62.7% 64.8% 75.3% 51.2% 64.5% 65.0% 79.1%

Quar- VN 60.2% 74.3% 62.8% 73.1% 70.0% 81.2% 72.7% 82.3% 67.4% 79.2% 69.7% 79.9%

tet CL 45.8% 44.8% 39.5% 35.8% 62.6% 66.8% 65.4% 69.3% 68.6% 74.4% 70.9% 74.5%

FL 36.0% 50.8% 40.8% 52.0% 69.8% 76.1% 69.9% 76.2% 61.7% 69.4% 64.5% 70.9%

Av. 43.1% 49.8% 46.5% 51.0% 58.5% 65.1% 64.6% 71.2% 59.0% 66.8% 64.7% 72.3%

©: used, ×: not used. Bold font denotes recognition rates of higher than 75%.

• Using musical context improved recognition rates, on average, by approximately

10%. This is because, in the musical pieces used in our experiments, pitches in the

melodies of simultaneous voices rarely crossed.

• When the solo-sound template was used, the use of musical context lowered recogni-

tion rates, especially for CL. Because our method of using musical context calculates

the a priori probability of each note on the basis of the a posteriori probabilities of

temporally neighboring notes, it requires an accuracy sufficient for pre-calculating

the a posteriori probabilities of the temporally neighboring notes. The lowered

recognition rates are because of the insufficient accuracy of this pre-calculation.

In fact, this phenomenon did not occur when the mixed-sound templates, which

improved the accuracies of the pre-calculations, were used. Therefore, musical con-

text should be used together with some technique of improving the pre-calculation

accuracies, such as a mixed-sound template.
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Table 5.6: Results of McNemar’s test for quartet music (Corr.=correct, Inc.=incorrect).

(a) Template comparison (with both F0-dpt. and context)

Solo-sound

Corr. Inc.

S+D Corr. 233 133

Inc. 25 109

χ2
0 = (133 − 25)2/(133 + 25)

= 73.82

Solo-sound

Corr. Inc.

S+D+T Corr. 224 148

Inc. 34 94

χ2
0 = (148 − 34)2/(148 + 34)

= 71.40

S+D

Corr. Inc.

S+D+T Corr. 347 25

Inc. 19 109

χ2
0 = (25 − 19)2/(25 + 19)

= 1.5

(b) With vs.without F0-dpt

(with S+D+T template and context)

w/o F0-dpt

Corr. Inc.

w/ F0-dpt Corr. 314 58

Inc. 25 103

χ2
0 = (58 − 25)2/(58 + 25)

= 13.12

(c) With vs.without context

(with S+D+T template and F0-dpt model)

w/o Context

Corr. Inc.

w/ Context Corr. 308 64

Inc. 27 101

χ2
0 = (64 − 27)2/(64 + 27)

= 15.04
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• The recognition rate for PF was not high enough in some cases. This is because the

timbre of PF is similar to that of CG. In fact, even humans had difficulty distin-

guishing them in listening tests of sounds resynthesized from harmonic structures

extracted from PF and CG tones.

5.6.3 Experiment 2: Template Construction from Only One
Piece

Next, to compare template construction from only one piece with that from two pieces

(i.e., leave-one-out), we conducted an experiment on template construction from only one

piece. The results are shown in Table 5.7. Even when using a template made from only

one piece, we obtained comparatively high recognition rates for CG, VN, and CL. For FL,

the results of constructing a template from only one piece were not high (e.g., 30–40%),

but those from two pieces were close to the results of the case where the same piece was

used for both template construction and testing. This means that a variety of influences

of sounds overlapping were trained from only two pieces.

5.6.4 Experiment 3: Insufficient Instrument Combinations

We investigated the relationship between the coverage of instrument combinations in a

template and the recognition rate. When a template that does not cover instrument

combinations is used, the recognition rate might decrease. If this decrease is large, the

number of target instruments of the template will be difficult to increase because O(mn)

data are needed for a full-combination template, where m and n are the number of target

instruments and simultaneous voices. The purpose of this experiment is to check whether

such a decrease occurs in the use of a reduced-combination template. As the reduced-

combination template, we used one that contains the combinations listed in Table 5.8

only. These combinations were chosen so that the order of the combinations was O(m).

Similarly to Experiment 1, we used the leave-one-out cross validation method. As we

can see from Table 5.9, we did not find significant differences between using the full

instrument combinations and the reduced combinations. This was confirmed, as shown in

Table 5.10, through McNemar’s test, similarly to Experiment 1. Therefore, we expect that

the number of target instruments can be increased without the problem of combinational

explosion.
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Table 5.7: Template construction from only one piece (Experiment 2). Quartet only due

to lack of space. [Unit: %]

S+D S+D+T

13 16 17 
 13 16 17 


PF (57.8) 32.3 38.4 36.6 (67.2) 33.2 45.1 39.7

CG (73.3) 78.1 76.2 76.7 (76.8) 84.3 80.3 82.1

13 VN (89.5) 59.4 87.5 86.2 (87.2) 58.0 85.2 83.1

CL (68.5) 70.8 62.2 73.8 (72.3) 72.3 68.6 75.9

FL (85.5) 40.2 74.9 82.7 (86.0) 38.9 68.8 80.8

PF 74.1 (64.8) 61.1 71.2 79.6 (67.1) 73.0 78.3

CG 79.2 (77.9) 78.9 74.3 70.4 (82.6) 74.0 75.2

16 VN 89.2 (85.5) 87.0 87.0 86.0 (83.5) 84.7 85.0

CL 68.1 (78.9) 68.9 76.1 72.4 (82.8) 76.3 82.1

FL 82.0 (75.9) 72.5 77.3 77.9 (72.3) 35.7 69.2

PF 53.0 39.4 (51.2) 51.6 52.2 40.6 (55.7) 53.7

CG 73.7 69.0 (75.8) 75.0 76.0 74.3 (78.4) 80.0

17 VN 79.5 61.2 (78.3) 73.6 77.4 58.0 (78.7) 71.7

CL 51.3 60.5 (57.1) 57.9 61.1 62.6 (66.9) 65.4

FL 65.0 35.0 (73.1) 68.7 58.6 34.7 (70.9) 62.6


Leave-one-out. Numbers in left column denote piece numbers for test. Those in top row
denote piece numbers for template construction.

5.6.5 Experiment 4: Effectiveness of LDA

Finally, we compared the dimensionality reduction using both PCA and LDA with that

using only PCA to evaluate the effectiveness of LDA. The experimental method was leave-

one-out cross validation. The results are shown in Figure 5.6. The difference between the

recognition rates of the solo-sound template and the S+D or S+D+T template was 20–

24% using PCA+LDA and 6–14% using PCA only. These results mean that LDA (or

DAMS) successfully obtained a subspace where the influence of the overlapping of sounds

of multiple instruments was minimal by minimizing the ratio of the within-class variance

to the between-class variance. Under all conditions, using LDA was superior to not using

LDA.
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5.6 Experiments

Table 5.8: Instrument combinations in Experiment 3.

Solo PF, CG, VN, CL, FL

Duo PF–PF, CG–CG, VN–PF, CL–PF, FL–PF

Trio Not used

Quartet Not used

Figure 5.6: Comparison of using both PCA and LDA with using only PCA (Experiment
4). “Duo”, “Trio”, and “Quartet” represent pieces for test (recognition). “S”, “S+D”,
and “S+D+T” represent types of templates.

We confirmed that combining LDA and the mixed-sound template is effective using

two-way factorial analysis of variance (ANOVA) where the two factors are dimensionality

reduction methods (PCA only and PCA+LDA) and templates (S, S+D, and S+D+T).

Because we tested each condition using duo, trio, and quartet versions of Piece Nos. 13,

16, and 17, there are nine results for each cell of the two-factor matrix. The table of

ANOVA is given in Table 5.11. From the table, we can see that the interaction effect as

well as the effects of dimensionality reduction methods and templates are significant at

α = 0.001. This result means that mixed-sound templates are particularly effective when

combined with LDA.
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Table 5.9: Comparison of templates whose instrument combinations were reduced (subset)

and not reduced (full set).

Subset Full set

PF 85.4% 78.9%

CG 70.8% 85.1%

Duo VN 88.2% 87.7%

CL 90.4% 89.9%

FL 79.7% 78.8%

Average 82.9% 84.1%

PF 73.9% 61.4%

CG 62.0% 82.0%

Trio VN 85.7% 83.5%

CL 79.7% 78.3%

FL 76.5% 76.9%

Average 75.6% 76.4%

PF 68.9% 53.1%

CG 52.4% 75.3%

Quartet VN 85.0% 82.3%

CL 71.1% 69.3%

FL 74.5% 76.2%

Average 70.4% 71.2%

5.6.6 Application to XML Annotation

In this section, we show an example of XML annotation of musical audio signals using our

instrument recognition method. We used a simplified version of MusicXML instead of the

original MusicXML format because our method does not include rhythm recognition and

hence cannot determine note values or measures. The document type definition (DTD)

of our simplified MusicXML is shown in Figure 5.7. The main differences between it and

the original one are that elements related to notation, which cannot be estimated from

audio signals, are reduced and that time is represented in seconds. The result of XML

annotation of a piece of polyphonic music is shown in Figure 5.8. By using our instrument

recognition method, we classified notes according to part and described the instrument
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Table 5.10: Results of McNemar’s test for full-set and subset templates.

Subset

Corr. Inc.

Full set Corr. 341 25

Inc. 19 115

χ2
0 = (25 − 19)2/(25 + 19)

= 1.5

Table 5.11: ANOVA.

Src. of var. S.S. d.f. F-value p-value

D.R. 0.336 1 102.08 1.806 × 10−13

Template 0.302 2 45.75 7.57 × 10−12

Interaction 0.057 2 8.75 5.73 × 10−4

Residual 0.158 48 —– —–

Total 0.855 53 —– —–

S.S.=sum of squares, d.f.=degrees of freedom,

D.R.=dimensionality reduction.

for each part.

5.6.7 Discussion

We achieved average recognition rates of 84.1% for duo, 77.6% for trio, and 72.3% for

quartet music chosen from five different instruments. We think that this performance

is state-of-the-art, but we cannot directly compare these rates with experimental results

published by other researchers because different researchers used different test data in

general. We also find the following two limitations in our evaluation:

(a) The correct F0s are given.

(b) Non-realistic music (i.e., music synthesized by mixing isolated monophonic sound

samples) is used.

First, we gave the correct F0 for every note in the evaluation because F0 estimation for

a mixture of sounds is still a challenging problem. We have to integrate our method with a

multiple-F0 estimation method to evaluate the whole performance, but the integration is
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� �
<!ENTITY % score-header

"(work?, movement-number?, movement-title?,
identification?, defaults?, credit*,
part-list)">

<!ELEMENT part-list (score-part+)>
<!ELEMENT score-part

(identification?, part-name,
part-abbreviation?, score-instrument)>

<!ATTLIST score-part
id ID #REQUIRED

>
<!ELEMENT score-instrument

(instrument-name, instrument-abbreviation?)>
<!ELEMENT instrument-name (#PCDATA)>
<!ELEMENT instrument-abbreviation (#PCDATA)>

<!ELEMENT score-partwise-simple>
(%score-header;, part+)>

<!ATTLIST score-partwise-simple
version CDATA "1.0"

>
<!ELEMENT part (note+)>
<!ATTLIST part

id IDREF #REQUIRED
>

<!ELEMENT note (pitch, onset, offset)>
<!ELEMENT pitch (step, alter?, octave)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT alter (#PCDATA)>
<!ELEMENT octave (#PCDATA)>
<!ELEMENT onset (#PCDATA)>
<!ATTLIST onset

unit CDATA "sec"
>
<!ELEMENT offset (#PCDATA)>
<!ATTLIST offset

unit CDATA "sec"
>� �

Figure 5.7: DTD of our simplified MusicXML.

not easy because errors of F0 estimation seriously influence the performance of instrument

recognition if cascade combination. In the next chapter, therefore, we will propose a new

framework where both are probabilistically integrated.

Second, we used non-realistic music because information on the instruments for every

note that was used as correct references in the evaluation was easy to prepare. Strictly

speaking, however, the acoustical characteristics of real music are different from those of

such synthesized music. The performance of our method would decrease for real music

because successive notes in a melody sometimes overlap due to legato, unclear note onsets,
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� �
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE score-partwise-simple SYSTEM "partwisesimple.dtd">
<score-partwise-simple>
<part-list>

<score-part id="P1">
<part-name>Part 1</part-name>
<score-instrument>Piano</score-instrument>
</score-part>
<score-part id="P2">
<part-name>Part 3</part-name>
<score-instrument>Violin</score-instrument>
</score-part>

......
</part-list>
<part id="P1">

<note>
<pitch>
<step>G</step>
<alter>+1</alter>
<octave>3</octave>

</pitch>
<onset>1.0</onset>
<offset>2.0</offset>

</note>
<note>
<pitch>
<step>G</step>
<octave>3</octave>

</pitch>
<onset>2.0</onset>
<offset>2.5</offset>

</note>
<note>
<pitch>
<step>D</step>
<octave>4</octave>

</pitch>
<onset>2.5</onset>
<offset>3.0</offset>

</note>
......

</part>
<part id="P2">

<note>
<pitch>
<step>D</step>
<alter>+1</alter>
<octave>4</octave>

</pitch>
<onset>1.5</onset>
<offset>2.488541</offset>

</note>
<note>
<pitch>
<step>C</step>
<alter>+1</alter>
<octave>4</octave>

</pitch>
<onset>3.0</onset>
<offset>3.5</offset>

</note>
......

</part>
......

</score-partwise-simple>
� �

Figure 5.8: Example of MusicXML annotation.
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and sound mixtures often involving reverberations. Because the framework proposed in

the next chapter does not require such notewise references for evaluation, the difference

of the difficulties between synthesized music and real performances will be discussed in

the next chapter.

5.7 Conclusion

We proposed new methods for improving instrument recognition in polyphonic music.

The conclusions of this chapter are summarized as follows:

• We presented a new solution to the problem of the overlapping of common-frequency

partials. The key idea behind our solution is to collect training data from polyphonic

sounds. Analyzing training data obtained from polyphonic sounds has made it

possible to measure the influence of the partial overlapping on the variation in

each feature and to weight the features to minimize the influence. The results of

experiments with various conditions showed that this solution was effective even if

the training data did not cover the thorough polyphonic combinations.

• We also presented a method for using musical context to avoid musically unnatural

errors. If the instrument for a certain note is identified as a certain instrument, those

for temporally neighboring notes are also probably the same instrument. Based

on this idea, we introduced re-calculation of the a priori probability using the pre-

calculated a posteriori probabilities for temporally neighboring notes. We confirmed

that this method was effective as long as the musical piece to be recognized rarely

has simultaneous melodies that cross each other in pitch.
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Chapter 6

Note-estimation-free Instrument
Recognition for Polyphonic Music

In this chapter, we first propose a new probabilistic representation of instrument existence

called an instrogram. Next, we formulate the instrogram as a set of instrument existence

probabilities, which is defined as the product of two kinds of probabilities. We then present

a method for calculating the two kinds of probabilities.

6.1 Introduction

Although the number of studies dealing with instrument recognition in polyphonic music

has been increasing in recent years (see Section 2.1.1 for the details), most of them require

preceding note (or F0) estimation process. For example, OPTIMA [46], Ipanema [37],

Kinoshita et al.’s method [38], and our previous method (see Chapter 5) identify the

instrument for each note (called notewise processing) and hence have to estimate the onset

time and fundamental frequency (F0) of each note. Eggink and Brown’s methods [39, 40,

112] identify instruments for each frame. Although they do not require onset detection,

they still require the estimation of F0s of notes played at each frame. Because onset

detection and F0 estimation are difficult in polyphonic music in general, the performance

of instrument recognition in these studies are greatly suffered from their errors. In the

experiments of most studies mentioned above, therefore, correct data on onset times and

F0s were manually given.

In this chapter, we propose a new technique that recognizes musical instruments in

polyphonic musical audio signals without using onset detection or F0 estimation as explicit

and deterministic preprocesses. The key concept underlying our technique is to visualize

the probability that the sound of each target instrument exists at each time and with
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Chapter 6 Non-estimation-free Instrument Recognition

each F0 as a spectrogram-like representation called an instrogram. This probability is

defined as the product of two kinds of probabilities, called nonspecific instrument existence

probability and conditional instrument existence probability, which are calculated using the

PreFEst [7] and hidden Markov models, respectively. The advantage of our technique is

that errors due to the calculation of one probability do not influence the calculation of

the other probability because the two probabilities can be calculated independently.

6.2 Instrogram

The instrogram is a spectrogram-like graphical representation of a musical audio signal,

which is useful for determining which instruments are used in the signal. In a basic format,

an instrogram corresponds to a specific instrument. The instrogram has horizontal and

vertical axes representing time and frequency, and the intensity of the color of each point

(t, f) shows the probability p(ωi; t, f) that the target instrument ωi is used at time t

and at an F0 of f . An example is presented in Figure 6.1. This example shows the

results of analyzing an audio signal of “Auld Lang Syne” played on the piano, violin,

and flute. The target instruments for analysis were the piano, violin, clarinet, and flute.

If the instrogram is too detailed for some purposes, it can be simplified by dividing the

entire frequency region into a number of subregions and merging the results within each

subregion. A simplified version of Figure 6.1 is given in Figure 6.2. The original or

simplified instrogram shows that the melodies in the high (approx. note numbers 70–80),

middle (60–75), and low (45–60) pitch regions are played on flute, violin, and piano,

respectively.

6.3 Algorithm for Calculating Instrogram

Let Ω = {ω1, · · · , ωm} be the set of target instruments. We then have to calculate the

probability p(ωi; t, f) that a sound of the instrument ωi with an F0 of f exists at time

t for every target instrument ωi ∈ Ω. This probability is called the instrument existence

probability (IEP). Here, we assume that multiple instruments are not being played at the

same time and at the same F0, that is, ∀ωi, ωj ∈ Ω: i �= j =⇒ p(ωi ∩ ωj ; t, f) = 0. Let

ω0 denote the silence event, which means that no instruments are being played, and let

Ω+ = Ω ∪ {ω0}. The IEP then satisfies
∑

ωi∈Ω+ p(ωi; t, f) = 1. When the symbol “X”

denotes the union event of all target instruments, which stands for the existence of some
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Figure 6.1: Example of the instrogram.
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Figure 6.2: Simplified (summarized) instrogram for Figure 6.1.
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Chapter 6 Non-estimation-free Instrument Recognition

instrument (i.e., X = ω1 ∪ · · · ∪ ωm), the IEP for each ωi ∈ Ω can be calculated as the

product of two probabilities:

p(ωi; t, f) = p(X; t, f) p(ωi|X; t, f),

because ωi ∩ X = ωi ∩ (ω1 ∪ · · · ∪ ωi ∪ · · · ∪ ωm) = ωi. Above, p(X; t, f), called the

nonspecific instrument existence probability (NIEP), is the probability that the sound of

some instrument with an F0 of f exists at time t, while p(ωi|X; t, f), called the conditional

instrument existence probability (CIEP), is the conditional probability that, if the sound

of some instrument with an F0 of f exists at time t, the instrument is ωi. The probability

p(ω0; t, f) is given by p(ω0; t, f) = 1 −∑ωi∈Ω p(ωi; t, f).

6.3.1 Overview

Figure 6.3 shows an overview of the algorithm for calculating an instrogram. Given

an audio signal, the spectrogram is first calculated. The short-time Fourier transform

(STFT) shifted by 10ms (441 points at 44.1 kHz sampling) with an 8,192-point Hamming

window is used in the current implementation. We next calculate the NIEPs and CIEPs.

The NIEPs are calculated by analyzing the power spectrum at each frame (timewise

processing) using the PreFEst[7]. The PreFEst models the spectrum of a signal containing

multiple musical instrument sounds as a weighted mixture of harmonic-structure tone

models at each frame. The CIEPs are, on the other hand, calculated by analyzing the

temporal trajectory of the harmonic structure with every F0 (pitchwise processing). The

trajectory is analyzed with a framework similar to speech recognition, based on left-

to-right hidden Markov models (HMMs) [113]. This HMM-based temporal modeling

of harmonic structures is important because temporal variations in spectra characterize

timbres well. This is the main difference from framewise recognition methodologies [40,

112]. Finally, the NIEPs and CIEPs are multiplied.

The advantage of this technique lies in the fact that p(ωi; t, f) can be estimated ro-

bustly because the two constituent probabilities are calculated independently and are

then integrated by multiplication. In most previous studies, the onset time and F0 of

each note were first estimated, and then the instrument for the note was identified by

analyzing spectral components extracted based on the results of the note estimation. The

upper limit of the instrument identification performance was therefore bound by the prece-
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Figure 6.3: Overview of our technique for calculating the instrogram.
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dent note estimation, which is generally difficult and not robust for polyphonic music1.

Unlike such a notewise symbolic approach, our non-symbolic and non-sequential approach

is more robust for polyphonic music.

6.3.2 Nonspecific Instrument Existence Probability

The NIEP p(X; t, f) is estimated by using the PreFEst on the basis of the maximum

likelihood estimation without assuming the number of sound sources in a mixture. The

PreFEst, which was originally developed for estimating F0s of melody and bass lines,

consists of three processes: the PreFEst-front-end for frequency analysis, the PreFEst-

core for estimating the relative dominance of every possible F0, and the PreFEst-back-end

for evaluating the temporal continuity of the F0. Because the problem to be solved here

is not the estimation of the predominant F0s as melody and bass lines, but rather the

calculation of p(X; t, f) of every possible F0, we use only the PreFEst-core.

The PreFEst-core models an observed power spectrum as a weighted mixture of tone

models p(x|F ) for every possible F0 F . The tone model p(x|F ), where x is the log

frequency, represents a typical spectrum of harmonic structures, and the mixture density

p(x; θ(t)) is defined as

p(x; θ(t)) =
∫ Fh

Fl
w(t)(F )p(x|F )dF,

θ(t) = {w(t)(F )|Fl ≤ F ≤ Fh},

where Fl and Fh denote the lower and upper limits, respectively, of the possible F0 range,

and w(t)(F ) is the weight of a tone model p(x|F ) that satisfies
∫ Fh
Fl w(t)(F )dF = 1. If we can

estimate the model parameter θ(t) such that the observed spectrum is likely to have been

generated from p(x; θ(t)), the spectrum can be considered to be decomposed into harmonic-

structure tone models and w(t)(F ) can be interpreted as the relative predominance of the

tone model with an F0 of F at time t. We can therefore calculate the NIEP p(X; t, f)

as the weight w(t)(f), which can be estimated using the Expectation-Maximization (EM)

1We tested robustness with respect to onset errors in identifying an instrument for every note using
our previous method[114]. Giving errors following a normal distribution with a standard deviation of e [s]
to onset times, we obtained the following results:

e=0 e=0.05 e=0.10 e=0.15 e=0.20
71.4% 69.2% 66.7% 62.5% 60.5%
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algorithm [7]. In the current implementation, we use the tone model given by

p(x|F ) = α
N∑

h=1

c(h)G(x; F + 1200 log2 h, W),

G(x; m, σ) =
1√

2πσ2
exp

(
−(x − m)2

2σ2

)
,

where α is a normalizing factor, N = 16, W = 17 cent, and c(h) = G(h; 1, 5.5). This tone

model was also used in the earliest version of the PreFEst [115].

6.3.3 Conditional Instrument Existence Probability

The following steps are performed for every frequency f .

[Step 1] Harmonic structure extraction

The temporal trajectory of the harmonic structure with F0 of f is extracted. This is

represented as

H(t, f) = {(Fi(t, f), Ai(t, f)) | i=1, · · · , h},

where Fi(t, f) and Ai(t, f) are the frequency of amplitude of i-th partial of the sound with

F0 of f at time t. Fi(t, f) is basically equal to i·f but they are not exactly equal due to

vibrato etc. We set h to 10.

[Step 2] Feature extraction

For every time t (every 10ms in the implementation), we first excerpt a T -length bit

of the harmonic-structure trajectory Ht(τ, f) (t ≤ τ < t + T ) from the whole trajectory

H(t, f) and then extract a feature vector x(t, f) consisting of 28 features listed in Table 6.1

from Ht(τ, f). These features have been designed based on our investigations described

in Chapters 3 to 5. Then, the dimensionality is reduced to 12 dimensions using the

principal component analysis with the proportion value of 95%. T is 500ms in the current

implementation.

[Step 3] Probability calculation

We train L-to-R HMMs, each consisting of 15 states2, for target instruments ω1, · · · , ωm,

and then basically consider the time series of feature vectors, {x(t, f)}, to be generated

2We used more states than those used in usual speech recognition studies (typically three) because
the notes of musical instruments usually have longer durations than phonemes.
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Table 6.1: Overview of 28 features. Please see Section 3.3.2 for the exact definition.

Spectral features

1 Spectral centroid (SC)

2 – 10 Relative cumulative power (RCP) (up to 9th partials)

11 Odd/even power ratio (OER)

12– 20 Number of stably existing partials (NEP)

Temporal features

21 Power decay speed (PDS)

22– 24 Average differential of power envelope (ADP)

calculated as temporal mean of differentials of power envelope from t to t + iT/3

(i = 1, · · · , 3)

Modulation features

25 , 26 Amplitude and frequency of AM

27 , 28 Amplitude and frequency of FM

from a Markov chain of these HMMs. Then, the CIEP p(ωi|X; t, f) is calculated as

p(Mi|x(t, f)) =
p(x(t, f)|Mi)p(Mi)

m∑
i=1

p(x(t, f)|Mi)p(Mi)

,

where Mi is the HMM corresponding to the instrument ωi. p(x(t, f)|Mi) is trained from

data prepared in advance, and p(Mi) is the a priori probability.

In the above formulation, p(ωi|X; t, f) for some instruments may become greater than

zero even if no instruments are played. Theoretically, this does not matter because

p(X; t, f) becomes zero in such cases. In practice, however, p(X; t, f) may not be zero,

especially when a certain instrument is played at an F0 of an integer multiple or factor of

f . To avoid this, we prepare an HMM, M0, trained with feature vectors extracted from

silent signals (note that some instruments may be played at non-target F0s) and consider

{x(t, f)} to be generated from a Markov chain of the m + 1 HMMs (M0, M1, · · · , Mm).

The CIEP is therefore calculated as

p(Mi|x(t, f)) =
p(x(t, f)|Mi)p(Mi)

m∑
i=0

p(x(t, f)|Mi)p(Mi)

,

where we use p(Mi) = 1/(m + 1).
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The above method may cause a problem when some partials overlap partials from other

simultaneous sounds. When partials overlap partials from other simultaneous sounds,

overlapping partials interfere with each other, and therefore acoustic features extracted

from the partials become different from those without the overlapping. To avoid this

problem, we use a mixed-sound template, described in the previous chapter, which is a

set of training data obtained from polyphonic music. Similarly to the previous chapter,

acoustic signals for a mixed-sound template are synthesized based on the scores (standard

MIDI files (SMFs), to be exact) of actual musical pieces. The synthesized signals have

the labels of the onset times, offset times, and F0s for all notes. After the time series of

the feature vectors is extracted from each note, each HMM is trained using a set of the

feature vector serieses extracted from the notes played on the corresponding instrument.

Training is thus performed notewise whereas recognition is not notewise.

6.3.4 Simplifying Instrograms

Although we calculate IEPs for every F0, some applications do not need such detailed

results. If the instrogram is used for retrieving musical pieces that include a certain

instrument’s sounds, for example, IEPs for rough frequency regions (e.g., high, middle

and low) are sufficient. We therefore divide the entire frequency region into N subregions

I1, · · · , IN and calculate the IEP p(ωi; t, Ik) for the k-th frequency subregion Ik. Here,

this is defined as p(ωi; t,
⋃

f∈Ik
f), which can be obtained by iteratively calculating the

following equation because the frequency axis is practically discrete.

p(ωi; t, f1 ∪ · · · ∪ fi ∪ fi+1)

= p(ωi; t, f1 ∪ · · · ∪ fi) + p(ωi; t, fi+1) − p(ωi; t, f1 ∪ · · · ∪ fi) p(ωi; t, fi+1),

where Ik = {f1, · · · , fi, fi+1, · · · , fnk
}.

6.3.5 Symbolization: Conversion to Event-oriented Representa-
tion

Although the main feature of the instrogram technique is to represent instrumentation

not as symbols but as probabilities, some applications may require a non-probabilistic

(i.e., deterministic) representation. We therefore describe a method for transforming an

instrogram to an event-oriented representation such as an event whereby a piano sound

occurs at time t0 and continues until t1. Our transformation method obtains such a
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Figure 6.4: Markov chain model used in symbolic annotation. The values are transition
probabilities, where pst is the probability of staying at the same state at the next time,
which was experimentally determined as 1 − 10−16.

representation using a Markov chain with states that correspond to instruments. Every

frequency subregion Ik, we obtain the time series of the instrument maximizing p(ωi; t, Ik)

and then consider it to be an output of a Markov chain, states of which are ω0, ω1, · · · , ωm

(Figure 6.4). The transition probabilities in the chain from a state to the same state, from

non-silence states to the silence state, and from the silence state to non-silence states are

greater than zero, and the other probabilities are zero. After obtaining the most likely

path in the chain using the Viterbi search, we can estimate the start and stop times of an

event of an instrument ωi from the transitions between the states ω0 and ωi; the transition

from ω0 to ωi means to start playing the instrument ωi while that from ωi to ω0 means

to stop it. This method assumes that only one instrument is played at the same time in

each frequency subregion. When multiple instruments are played in the same subregion

at the same time, the most predominant instrument will be annotated.

6.4 Experiments

We conducted experiments on obtaining instrograms and their symbolization for both

audio data generated on a computer and the recordings of real performances.
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Figure 6.5: Results of calculating instrograms from “Auld Lang Syne” with six different
instrumentations. “FL–VN–PF” means that the treble, middle, and bass parts are played
on flute, violin, and piano, respectively.
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6.4.1 Use of Generated Audio Data

We first conducted experiments on obtaining instrograms from audio signals of trio music

“Auld Lang Syne” used by Kashino et al. [37]. The audio signals were generated by mixing

audio data from RWC-MDB-I-2001[103] (Variation No. 1) according to a standard MIDI

file (SMF) that we input using a MIDI sequencer based on Kashino’s score. The target

instruments were the piano (PF), violin (VN), clarinet (CL), and flute (FL). The training

data for these instruments were taken from the audio data in RWC-MDB-I-2001 with

Variation Nos. 2 and 3. The time resolution was 10ms, and the frequency resolution was

every 100 cent. The width of each frequency subregion for the simplification was 600 cent.

We used HTK 3.0 for HMMs.

The results are shown in Figure 6.5. When we compare (a) and (b), (a) has high

IEPs for the flute in high-frequency regions while (b) has very low (almost zero) IEPs.

In contrast, (a) has very low (almost zero) IEPs for the clarinet and (b) has high IEPs.

Also, (d) has high IEPs for the clarinet and almost zero IEPs for the violin whereas (e)

has high IEPs for the violin and almost zero IEPs for the clarinet. In the case of (c), the

IEPs only for the piano are sufficiently high. Although both (e) and (f) are played on

the piano and violin, the IEPs for the violin in the highest frequency region are different.

This correctly reflects the difference between the actual instrumentations.

We then conducted experiments on symbolization of the instrograms obtained above.

We first prepared ground truth (correct data) from the SMF used to generate the audio

signals and then evaluated the results based on the recall rate R and precision rate P

given by

R =

m∑
i=1

N∑
k=1

(
# frames correctly
identified as ωi at Ik

)

m∑
i=1

N∑
k=1

(
# frames that should be
identified as ωi at Ik

) ,

P =

m∑
i=1

N∑
k=1

(
# frames correctly
identified as ωi at Ik

)

m∑
i=1

N∑
k=1

(
# frames identified
as ωi at Ik

) .

The results are shown in Table 6.2. We achieved a precision rate of 78.7% on average.

Although the recall rates were not high (14–38%), we consider the precision rates to be
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Table 6.2: Results of event-oriented (symbolic) description for “Auld Lang Syne.”

Recall Precision

FL–CL–PF 28.7% 63.4%

FL–PF–PF 38.5% 89.4%

FL–VN–PF 37.2% 89.5%

PF–CL–PF 22.2% 79.3%

PF–PF–PF 26.0% 93.5%

PF–VN–PF 24.2% 76.6%

VN–CL–PF 21.4% 63.6%

VN–PF–PF 14.3% 76.1%

VN–VN–PF 30.2% 76.9%

Average 27.0% 78.7%

more important than the recall rates for MIR; a system can use recognition results even

if some frames or frequency subregions are missing, whereas false results have a negative

influence on MIR.

We also evaluated the symbolization by merging all the frequency subregions; in other

words, we ignored the differences between frequency subregions. This was because the

results of instrument recognition are useful even without F0 information for MIR. For

example, a task such as searching for piano solo pieces can be achieved without F0 infor-

mation. The evaluation was conducted based on the recall rate R′ and precision rate P ′.

The recall and precision rates for this evaluation are given by

R′ =

m∑
i=1

(# frames correctly identified as ωi)

m∑
i=1

(# frames that should be identified as ωi)

,

P ′ =

m∑
i=1

(# frames correctly identified as ωi)

m∑
i=1

(# frames identified as ωi )

.

The results are listed in Table 6.3. The average precision rate was 87.5% and the max-

imum was 95.4% for FL–VN–PF. The precision rates for all pieces were over 80%, while
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Table 6.3: Results of event-oriented (symbolic) description for “Auld Lang Syne” (all
frequency subregions merged).

Recall Precision

FL–CL–PF 36.0% 80.3%

FL–PF–PF 56.8% 87.6%

FL–VN–PF 44.5% 95.4%

PF–CL–PF 40.5% 84.4%

PF–PF–PF 62.2% 91.4%

PF–VN–PF 40.5% 88.1%

VN–CL–PF 29.2% 87.6%

VN–PF–PF 34.9% 86.7%

VN–VN–PF 40.8% 85.3%

Average 42.8% 87.5%

the recall rates were approximately between 30 and 60%.

6.4.2 Use of Real Performances

We next conducted experiments on obtaining instrograms from the recordings of real

performances of classical and jazz music taken from the RWC Music Database[111]. The

instrumentation of all pieces is listed in Table 6.4. We only used the first one-minute

signal for each piece. The experimental conditions were basically the same as those in

Section 5.1. Because the target instruments were the piano, violin, clarinet, and flute,

the IEPs for the violin should also be high when string instruments other than the violin

are played, and the IEPs for the clarinet should always be low. The training data were

taken from both RWC-MDB-I-2001[103] and NTTMSA-P1 (a non-public musical sound

database)3.

The results, shown in Figure 6.6, show that (a) and (b) have high IEPs for the violin

while (e) and (f) have high IEPs for the piano. For (c), the IEPs for the violin increase after

10 sec, whereas those for the piano are initially high. This reflects the actual performances

of these instruments. When (d) is compared to (e) and (f), the former has slightly higher

3The database called NTTMSA-P1 consists of isolated monophonic tones played by two different
individuals for each instrument. Every semitone over the pitch range is played with three different
intensities for each instrument.
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Figure 6.6: Results of calculating instrograms from real-performance audio signals. RM-C
and RM-J stand for RWC-MDB-C-2001 and RWC-MDB-J-2001, respectively.
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Table 6.4: Musical pieces used and their instrumentations.

(i) No. 12, 14, 21, 38 Strings

Classical (ii) No. 19, 40 Piano+Strings

(iii) No. 43 Piano+Flute

Jazz (iv) No. 1, 2, 3 Piano solo

IEPs for the flute than the latter, although the difference is unclear. In general, the

IEPs are not as clear as those for signals generated by copy-and-pasting waveforms of

RWC-MDB-I-2001. This is because the acoustic characteristics of real performances have

greater variety. This could be improved by adding appropriate training data.

We also evaluated symbolization of these instrograms. The evaluation was only con-

ducted for the case in which all frequency subregions were merged because it is difficult

to manually prepare a reliable ground truth for each frequency subregion4. The results

are listed in Table 6.5. The average precision rate was 69.4% and the maximum was

84.3%, which were lower than those for synthesized music. This would also be because of

the great variety in the acoustic characteristics of real performances. The recall rates, in

contrast, were higher than those for synthesized music because the same instrument was

often simultaneously played over multiple frequency subregions, in which the instrument

was regarded as correctly recognized if it was recognized in any of these subregions.

6.4.3 Application to MPEG-7 Annotation

Describing multimedia content including musical one in a universal framework is an im-

portant task for content-based multimedia retrieval. In fact, a universal framework for

multimedia description, MPEG-7, has been established. Here, we discuss music descrip-

tion based on our instrogram analysis in the context of the MPEG-7 standard.

There are two choices for transforming instrograms to MPEG-7 annotations. First,

we can simply represent the instrument existence probabilities (IEPs) as a time series

of vectors. If one aims at the Query-by-Example such as the one discussed in the next

chapter, this annotation method should be used. Because the MPEG-7 standard has no

tag for the instrogram annotation, we added several original tags as shown in Figure 6.7.

4Although the SMF corresponding to each piece is available in the RWC Music Database, it cannot
be used because the SMF and audio signal are not synchronized.
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Table 6.5: Results of event-oriented (symbolic) description for real recordings (all fre-
quency subregions merged).

Recall Precision

RM-C No. 12 78.0% 63.4%

14 76.0% 74.0%

19 45.1% 65.6%

21 89.9% 70.0%

38 65.1% 64.0%

40 50.8% 71.5%

43 49.7% 84.3%

RM-J No. 1 62.1% 72.0%

2 75.6% 69.3%

3 45.9% 59.7%

Average 63.8% 69.4%

This example shows the time series of the 8-dimensional IEPs for the piano (line 13) with

the 10-ms time resolution (line 4). Each dimension corresponds to a different frequency

region, which is defined by dividing the entire range from 65.5Hz to 1048Hz by 1/2 octave

(line 2).

Second, we can annotate musical instruments as an event-oriented representation de-

scribed in Section 6.3.5. If one aims at the Query-by-Instrument (i.e., retrieving pieces by

specifying instruments by a user), this annotation method may be more useful than the

first one. We also added several original tags as shown in Figure 6.8. This example shows

that an event of the piano (line 9) at a pitch between 92 and 130Hz (line 8) occurs at

6.850 s (line 4) and continues during 0.200 s (line 5). This representation can be obtained

using the Viterbi search as described in Section 6.3.5.

6.4.4 Discussion

The main contribution in this chapter is the formulation of instrument recognition as the

calculation of NIEPs and CIEPs. Because the calculation of NIEPs includes a process

that can be considered to be an alternative to the estimation of onset times and F0s,

this formulation has made it possible to omit their explicit estimation, which is difficult
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� �
1:<AudioDescriptor xsi:type="AudioInstrogramType"

2: loEdge="65.5" hiEdge="1048" octaveResolution="1/2">

3: <SeriesOfVector totalNumOfSamples="5982"

4: vectorSize="8" hopSize="PT10N1000F">

5: <Raw mpeg7:dim="5982 8">

6: 0.0 0.0 0.0 0.0 0.718 0.017 0.051 0.0

7: 0.0 0.0 0.0 0.0 0.724 0.000 0.085 0.0

8: 0.0 0.0 0.0 0.0 0.702 0.013 0.089 0.0

9: 0.0 0.0 0.0 0.0 0.661 0.017 0.063 0.0

10: ......

11: </Raw>

12: </SeriesOfVector>

13: <SoundModel SoundModelRef="IDInstrument:Piano"/>

14:</AudioDescriptor>
� �

Figure 6.7: Excerpt of example of instrogram annotation.

� �
1:<MultimediaContent xsi:type="AudioType">

2: <Audio xsi:type="AudioSegmentType">

3: <MediaTime>

4: <MediaTimePoint>T00:00:06:850N1000</MediaTimePoint>

5: <MediaDuration>PT0S200N1000</MediaDuration>

6: </MediaTime>

7: <AudioDescriptor xsi:type="SoundSource"

8: loEdge="92" hiEdge="130">

9: <SoundModel SoundModelRef="IDInstrument:Piano"/>

10: </AudioDescriptor>

11: </Audio>

......
� �

Figure 6.8: Excerpt of example of symbolic annotation.

for polyphonic music. Based on similar motivations, Vincent and Rodet [42] and Essid

et al. [41] proposed new instrument recognition techniques. Vincent and Rodet’s tech-

nique involves both transcription and instrument identification in a single optimization

procedure. This technique is based on a reasonable formulation and is probably effective

but has only been tested on solo and duo excerpts. Essid et al.’s technique identifies the

instrumentation, instead of the instrument for each part, from a pre-designed possible-

instrumentation list. This technique is based on the standpoint that music usually has

one of several typical instrumentations. They reported successful experimental results,
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but identifying instrumentations other than those prepared is impossible. Our instrogram

technique, in contrast, has made it possible to recognize instrumentation without making

any assumptions about instrumentation for audio data, including synthesized music and

real performances that have various instrumentations.

6.5 Conclusion

We described a new instrogram representation obtained by using a new musical instrument

recognition technique that explicitly uses neither onset detection nor F0 estimation. The

conclusions of this chapter are summarized as follows:

• We proposed a new representation of instrumentation called the instrogram. The

instrogram graphically visualizes the temporal trajectories of IEPs, that is, how

likely each target instrument is played. This probabilistic representation facilitated

a probabilistic formulation of instrument recognition in polyphonic music.

• We formulated a method for obtaining an instrogram (in other words, calculating

IEPs) based on probabilistic calculation. The IEP is defined as the product of the

NIEP and CIEP, which are calculated using the PreFEst and HMMs, repectively.

Because errors of one probability do not influence the calculation of the other prob-

ability, the IEP can be robustly calculated.
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Application

This chapter describes an application of the instrogram analysis to similarity-based MIR.

7.1 Introduction

In this chapter, we apply the instrogram analysis to similarity-based MIR. Similarity-

based MIR, also known as the Query-by-Example, aims to search for musical pieces similar

to that specified by the user. Similarity-based MIR is useful because it requires no special

musical knowledge. It has therefore been widely studied as reviewed in Chapter 2 [79–

86]. These studies basically used low-level features (e.g., MFCCs) extracted from signals

containing multiple instrument sounds. Such features can be relatively easily extracted

and similarity in them coarsely correspond to perceptual similarity in music. In fact, they

attained successful results to some extent. Low-level features, however, are unsuitable to

focus on a certain musical element (e.g., melody, rhythm, harmony, and instrumentation).

Some users may focus on the harmony while listening to music, but other users may

focus on the instrumentation. Calculation of music similarity should therefore take into

account this dependency of the importance of musical elements on users. Because low-

level features do not clearly correspond to a specific musical element, it is difficult to

achieve the user-adaptive music similarity calculation.

For this music similarity calculation, we have to design a higher-level feature corre-

sponding to each specific musical element. In other words, a feature representing a melody

should reflect only the melody and a feature representing instrumentation should reflect

only the instrumentation. We therefore adopt the instrogram, proposed in the previous

chapter, as the feature representing instrumentation. Specifically, as the first step for user-

adaptive similarity-based MIR, we design a method for calculating the similarity between
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instrograms and build a prototype system that searches for musical pieces based on the

similarity of instrogram. Although we have to design features representing other musical

elements and a method for weighting the features according to the user’s preference to

complete the user-adaptive similarity-based MIR, we leave them as future issues in this

thesis.

7.2 Music Information Retrieval based on Instrumen-

tation Similarity

We achieve MIR based on instrumentation similarity using instrograms. We consider that

instrumentation is deeply connected to listeners’ impression. When the same musical

piece is played on different instruments, listeners may have different impressions on the

piece. This implies a deep connection between instrumentation and listeners’ impression.

MIR based on instrumentation similarity will therefore be useful, for example, for playlist

generation for background music. Here, instead of calculating similarity, we calculate the

distance (dissimilarity) between instrograms by using DTW as follows:

(a) A vector pt for every time t is obtained by concatenating the IEPs of all instruments:

pt = (p(ω1; t, I1), p(ω1; t, I2), · · · , p(ωm; t, IN))′,

where ′ is the transposition operator.

(b) The distance between two vectors, p and q, is defined as the cosine distance:

dist(p, q) = 1 − (p, q)/||p||·||q||,

where (p, q) = p′Rq, and ||p|| =
√

(p, p). R = (rij) is a positive definite symmetric

matrix that gives the relationship between elements. One may want to give a high

similarity to pieces where the same instrument is played at different pitch regions

(e.g., p(ω1; t, I1) vs. p(ω1; t, I2)) or pieces where different instruments within the

same instrument family (e.g., violin vs. viola) are played. They can reflect such

relations in the distance measure by setting rij for the corresponding elements to a

value more than zero. When R is the unit matrix, (p, q) and ||p|| are equivalent to

the standard inner product and norm.

(c) The distance (dissimilarity) between {pt} and {qt} is calculated by applying DTW

with the above-mentioned distance measure.
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The timbral similarity was also used in previous MIR-related studies[79, 88], The tim-

bral similarity was calculated on the basis of spectral features, such as MFCCs, directly

extracted from complex sound mixtures. Such features sometimes do not clearly reflect

actual instrumentation, as will be implied in the next section, because they are influ-

enced not only by instrument timbres but also by arrangements, including the voicing of

chords. On the other hand, because instrograms directly represent instrumentation, this

will facilitate the appropriate calculation of the similarity of instrumentation. Moreover,

instrograms have the following advantages:

Intuitiveness The musical meaning is intuitively clear.

Controllability By appropriately setting R, users can ignore the differences between

pitch regions within the same instrument and/or the difference between instruments

within the same instrument family.

7.3 Implementation and Experiments

7.3.1 Implementation

We built a prototype system of MIR based on our instrumentation similarity using Java.

This prototype system has two retrieval functions. One is the Query-by-Example, where

the query is the musical piece specified by the user (Figure 7.1). The other is the Query-

by-IEP, where the user directly specifies instrument existence probabilities (IEPs) (Figure

7.2). This method can be used in a situation where the user wants a piano piece or a

strings piece. In the former case, after the user selects a musical piece as a query, the

system calculates the (dis)similarity between the selected piece and each of the pieces in

a collection using the method described in Section 7.2 and then shows the list of musical

pieces in order of similarity. In the latter case, instead of a musical piece, the user specifies

the IEP for each instrument using the sliders each of which corresponds to each target

instrument. The dissimilarity between the specified IEPs and each of the pieces in the

collection is calculated by

dist(p, {qt}) =
∑

t

{1 − (p, qt)/||p|| · ||q||} ,

where p is the vector consisting of the IEPs specified by the user and {qt} is a temporal

sequence of the IEP vectors of a musical piece in the music collection.
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Figure 7.1: Instrogram-based MIR prototype system (Query-by-Example).
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Figure 7.2: Instrogram-based MIR prototype system (Query-by-IEP).

123



Chapter 7 Application

Users can see the IEPs of the piece that they are listening to in two ways: the original

instrogram visualization and the synchronized bar-graph visualization. The former is the

spectrogram-like representation like Figure 6.2. The latter shows audio-synchronized bar

graphs of IEPs in real time like those of the power spectrum display on digital music

players. Because the original instrogram visualization shows the temporal variation of

IEPs at once, The users can easily jump, for example, to the time point when the violin

begins to play.

7.3.2 Experiments on Similarity Calculation

We tested the calculation of the dissimilarities between instrograms. The data used were

the real performance recordings used in Section 6.4.2, the details of which were described

in Table 6.4. The results, listed in Table 7.1 (a), can be summarized as follows:

• The dissimilarities within each group were generally less than 7,000 (except

Group (ii)).

• Those between Groups (i) (played on strings) and (iv) (piano) were generally greater

than 9,000, and some were greater than 10,000.

• Those between Groups (i) and (iii) (piano+flute) were also around 9,000.

• Those between Groups (i) and (ii) (piano+strings), (ii) and (iii), and (ii) and (iv)

were around 8,000. As one instrument is commonly used in these pairs, these

dissimilarities were reasonable.

• Those between Groups (iii) and (iv) were around 7,000. Because the difference

between these groups is only the presence of the flute, these were also reasonable.

For comparison, Table 7.1 (b) lists the results obtained using MFCCs. The 12-dimensional

MFCCs were extracted every 10ms with a 25-ms Hamming window. No Delta MFCCs

were used. After the MFCCs were extracted, the dissimilarity was calculated using the

method described in Section 7.2, where {pt} was a sequence of 12-dimensional MFCC

vectors instead of IEP vectors. Comparing the results with the two methods, we can see

the following differences:

• The dissimilarities within Group (i) and the dissimilarities between Group (i) and

the others for IEPs differed more than those for MFCCs. In fact, all the three-best-
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similarity pieces from those in Group (i) belonged to the same Group, i.e., (i), for

IEPs, while those for MFCCs contained pieces out of Group (i).

• None of the three-best-similarity pieces from the four pieces without strings (Groups

(iii) and (iv)) contained strings for IEPs, whereas those for MFCCs contained pieces

with strings (C14, C21).

7.4 Conclusion

In this chapter, we applied the instrogram analysis to similarity-based MIR. The conlu-

sions of this chapter is summarized as follows:

• We pointed out that a music similarity measure should be separately designed for

each musical element and adaptive to users because the importance of musical el-

ements are dependent on users. This is difficult by using low-level features that

have been commonly used because they correspond coarse characteristics of music,

not specific musical elements. New higher-level features corresponding to specific

musical elements are therefore needed.

• As the first step for tackling the above-mentioned problem, we designed a method

for measuring similarity between instrograms. The instrogram directly correspond

to instrumentation and therefore is considered a higher-level feature that satisfies

the above requirement.

• We demonstrated a prototype system of MIR based on similarity between instro-

grams. Our prototype system not only searches musical pieces based on instrogram

similarity but also visualizes the instrumentation of a piece that the user is listening

to. Through this demonstration, we confirmed that our musical instrument recog-

nition technique can actually be used for content-based MIR and a visual music

player.
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Table 7.1: Instrumentation dissimilarities between musical pieces.

(a) Using IEPs (instrograms)

(i) (ii) (iii) (iv) 3-best-similarity

C12 C14 C21 C38 C19 C40 C43 J01 J02 J03 pieces

C12 0 C21, C14, C38

C14 6429 0 C21, C12, C38

C21 5756 5734 0 C14, C12, C38

C38 7073 6553 6411 0 C21, C14, C38

C19 7320 8181 7274 7993 0 C21, C12, C38

C40 8650 8353 8430 8290 8430 0 J02, J01, C43

C43 8910 9635 9495 9729 8148 8235 0 J01, J02, J03

J01 9711 10226 10252 10324 8305 8214 6934 0 J02, J03, C43

J02 9856 10125 10033 10610 8228 8139 7216 6397 0 J01, C43, J03

J03 9134 9136 8894 9376 8058 8327 7480 6911 7223 0 J01, J02, C43

(b) Using MFCCs
(i) (ii) (iii) (iv) 3-best-similarity

C12 C14 C21 C38 C19 C40 C43 J01 J02 J03 pieces

C12 0 C21, C40, J02

C14 17733 0 C43, C12, J02

C21 17194 18134 0 C12, J01, J02

C38 18500 18426 18061 0 J01, J02, C21

C19 17510 18759 18222 19009 0 J02, C12, J03

C40 17417 19011 18189 19099 18100 0 C12, J02, J01

C43 18338 17459 17728 18098 18746 18456 0 J01, C14, J02

J01 17657 17791 17284 17834 18133 17983 16762 0 J02, C43, J03

J02 17484 17776 17359 18009 17415 17524 17585 15870 0 J01, J03, C21

J03 17799 18063 17591 18135 17814 18038 17792 16828 16987 0 J01, J02, C21
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Discussion

This chapter first discusses the main contributions of this study, then discusses the re-

maining issues and future directions.

8.1 Major Contributions

In this thesis, we pointed out four issues in instrument recognition, (1) the pitch de-

pendency of timbre, (2) the input of non-registered instruments, (3) the overlapping of

simultaneous played notes, and (4) the unreliability of the precedent note estimation

process, and proposed solutions to these issues. To solve the first issue, we proposed the

F0-dependent multivariate normal distribution. We solved the second issue by recognizing

non-registered instruments at the category level. We tackled the third issue by introducing

feature weighting based on how each feature is affected by the overlapping. To solve the

fourth issue, we presented a new framework of instrument recognition based on a prob-

abilistic representation of instrumentation called an instrogram. The main contributions

of these are summarized as follows:

Towards Computational Auditory Scene Analysis (CASA)

• Computational Modeling of Simultaneous and Sequential Grouping

Bregman [54] formulated auditory scene analysis as two kinds of grouping problems,

that is, simultaneous grouping and sequential grouping. The former aims at seg-

regation of a signal containing multiple sounds while the latter aims at temporal

modeling of a signal. When we interpret the instrogram analysis from the view-

point of CASA, the calculation of the nonspecific instrument existence probability

(NIEP) and conditional instrument existence probability (CIEP) can be considered
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as new approaches for simultaneous grouping and sequential grouping, respectively.

Sakuraba and Okuno [116] formulated automatic music transcription based on simul-

taneous grouping and sequential grouping. Their framework first performs simulta-

neous grouping and then sequential grouping. This cascade framework has a severe

limitation: errors of simultaneous grouping degrade the performance of sequential

grouping. On the other hand, the instrogram analysis is based on probabilistic for-

mulation; both grouping problems are formulated as calculation of probabilities and

integrated by multiplication of the probabilities. Our probabilistic formulation is a

promising approach for CASA.

• No Assumption of Complete Sound Source Separation

Previous studies separately investigated sound source (especially speech) recognition

and sound source separation. Sound source separation research aimed to generate

the signal from each source given a mixture of sounds while sound source recognition

research aimed to recognize a single source. If sound source separation technology

could generate separated signals without experiencing any distortion, this approach

is completely reasonable. In practice, however, it is almost impossible to separate

mixed sounds without distortion, and therefore we take into consideration the in-

fluence of the overlapping of multiple sounds at the sound source recognition phase.

From this viewpoint, we modeled the phenomenon in the overlapping of multiple

sounds and a solution to this overlapping problem. First, the use of the harmonic

structure model restricted the influence of the overlapping into the overlapping of

common-frequency partials. Second, we quantitatively analyzed the influence by

taking training data from polyphonic sounds. Third, we calculated the feature

weights that minimized the influence by means of linear discriminant analysis.

• Sound Recognition Scheme for Non-registered Sources

Although CASA aims to develop a unified framework for handling a variety of

sounds, no previous studies have discussed how to handle sounds that were not

contained in training data. Some speech recognition studies dealt with a similar

problem called out-of-vocabulary, but they did not deal with recognition of such

sounds based on a hierarchical taxonomy of sounds. We provided a solution of

category-level recognition of such sounds, inspired by human understanding of mu-

sical sounds. Humans often understand musical sounds coarsely even when listening
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for the first time. For example, they can distinguish violin-like sounds from piano-

like ones even if they have not listened to the sounds in the past. Our approach

is an implementation of such human-like flexible sound recognition. Although we

have tested this approach only on solo musical sounds, it will be possible to apply

this concept to polyphonic music and other general sounds.

• Development of Basic Technologies for Handling Musical Sounds

Because musical sounds are indispensable parts of auditory scenes, developing ba-

sic technologies for handling musical sounds is an important subtask for achieving

CASA. To this end, we developed feature extraction from musical sounds and a

method for the modeling of feature distributions using the F0-dependent multivari-

ate normal distribution. When F0 estimation is not accurate enough, the use of

the F0-dependent multivariate normal distribution may decrease the performance

of instrument recognition. This problem, however, can be solved by applying this

concept to the instrogram analysis. In the instrogram analysis, the likelihoods of

hidden Markov models (HMMs), each corresponding to a specific target instrument,

are calculated. This calculation is performed for every possible F0, instead of esti-

mating the F0s for the notes contained in the signal. This means that our concept of

F0-dependent timbre modeling will be freed from the unreliability of F0 estimation

if we extend it to HMMs (i.e., F0-dependent HMMs) and use the extended one for

calculating an instrogram.

Towards Content-based Music Information Retrieval (MIR)

• MIR based on Instrumentation Similarity

We achieved an MIR based on instrumentation similarity by designing a similarity

measure between instrograms. Although both timbral similarity calculation and in-

strument recognition have been actively investigated, no attempts have been made

to calculate the instrumentation similarity on the basis of instrument recognition

techniques, because previous instrument recognition aimed to determine the instru-

ments playing in given signals. The instrogram, which represents instrumentation

as a set of continuous values, is an effective approach for the design of a continuous

similarity measure.

• Middle-level Music Descriptor
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In previous content-based MIR studies, lower-level audio descriptors such as MFCCs

were mainly used. These features are easy to extract automatically and have at-

tained successful results to some extent. These, however, have a limitation due to

the unclear correspondence to musical meaning; the difference of MFCCs, for ex-

ample, may be caused by the difference of both instrumentation and chords. We

therefore need higher-level but automatically extractable descriptors (which we call

“middle-level” here). The instrogram is an example of such descriptors because it

can be automatically calculated and directly corresponds to instrumentation.

• Detailed (High-resolution) Instrument Annotation

Our instrogram analysis can calculate instrument existence probabilities with any

time resolution (e.g., 10ms) and any frequency resolution (e.g., 100 cent). This high-

resolution annotation is difficult and too time-consuming by manual annotation even

when done by music experts.

Towards Music Visualization

• Establishment of Visual Representation of Instrumentation

Because transforming a musical piece into a graphical representation allows us to

grasp the content of multiple musical pieces at once, music visualization is an im-

portant issue in making human music retrieval more efficient. Different researchers

have therefore attempted music visualization through different approaches.

The most traditional music visualization is a musical score. The musical score

is very useful but automatically obtaining the musical score from audio signals is

still a challenging problem. On the other hand, the most basic visualization of

audio signals is a spectrogram. The spectrogram can be automatically obtained

and is useful to check the distribution of spectral peaks on the time-frequency plane,

although it is not easy for untrained people to understand musical elements from

that.

Various other methods of music visualization have been proposed. Hiraga et al. [117,

118] dealt with some visualization methods of musical performances, but they used

MIDI signals and the methods are not easily applied to audio signals. Sagayamaet

al. [10] proposed a new visualization of audio signals, called specmurt. The specmurt

is made by suppressing overtones from a spectrogram with the specmurt analysis,
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which was described in Section 2.1.1. This is similar to the piano-roll expression and

is therefore more useful than the spectrogram for understanding musical content.

Goto [119] achieved visualization of chorus sections and repeated sections of popular

music in his music listening system SmartMusicKIOSK.

Tzanetakis [120] proposed the GenreGram and TimbreBall monitors. The Genre-

Gram monitor shows genre classification results. Each genre is represented as a

cylinder that moves up and down in real time based on a classification confidence

measure ranging from 0.0 to 1.0. Each cylinder is texture-mapped with a repre-

sentative image for each genre. The TimbreBall monitor visualizes in real time the

evolution of feature vectors extracted from an audio signal. In this animation, each

feature vector is mapped to the x, y, z coordinates of a small ball inside a cube.

The ball moves in the space as the sound is playing, following the evolution of the

corresponding feature vectors. Tzanetakis also proposed TimbreGram, which maps

audio files to sequences of vertical color stripes where each stripe corresponds to

a short slice of sound. The similarity of different files is shown as overall color

similarity. This is close to the instrogram concept, but the user can know only

the similarity from the TimbreGram; the TimbreGram does not state which instru-

ments are playing in the signal. Thus, visualization that shows instrumentation

has not been achieved. We achieved the visualization of instrumentation, called the

instrogram, by displaying instrument existence probabilities as a spectrogram-like

representation.

Towards Computational Modeling of Understanding Music

• Untrained Listeners’ Music Understanding

Goto [96] claimed that people, especially those who are musically untrained, would

understand music without mentally representing it as a score, and pointed out the

importance of developing a method for understanding music not based on scores.

He then claimed that good music descriptors should be musically intuitive, fun-

damental to a professional method of understanding music, and useful for various

applications. From this standpoint, he developed a method for recognizing melody

and bass lines, hierarchical beat structures, and chorus and repeated sections. The

instrogram also satisfies the above-mentioned requirements and is useful for devel-

oping an integrated framework of understanding music in a untrained-people-like
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fashion through integration with Goto’s work.

Towards Other Music Applications

• Educational Applications

Visualization of instrumentation of a musical piece based on the instrogram is useful

for learning the instrumentational structure of the piece in detail (for example, a

musical piece starts with the piano followed by the violin). Because the user can

easily jump to the time point where the violin begins to play by clicking the cor-

responding point in the instrogram window, it is also useful for repeated practice

of playing an instrument. In addition, once the instrogram representation is trans-

formed into an animated illustration of the instruments, it will be useful for music

education.

8.2 Remaining Issues and Future Directions

We have many remaining issues and future directions of research. Some of these are

summarized below.

To Further Improve Musical Instrument Recognition

• Introduction of Top-down Model

The instrogram analysis is a model of a bottom-up process, and no top-down pro-

cesses were introduced here. Musical knowledge (e.g., a certain instrument is rarely

played in a certain pitch range) and musical context will be able to be introduced

by modeling them in a probabilistic framework.

• F0-dependent GMMs and HMMs

Our concept of F0-dependent timbre modeling is not limited to the F0-dependent

multivariate normal distribution. It can be easily extended to Gaussian mixture

models (GMMs) and HMMs. In particular, the extension to HMMs will make it

possible to apply this concept to the instrogram analysis.

• Evaluation Using Music Containing Vocal and Drums

We have not used in evaluation any musical pieces that contain vocals or drum

sounds. If they are contained, the performance of instrument recognition may de-
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crease. It is therefore important to extend our technique for musical pieces that

contain vocals and drum sounds.

To Further Improve Music Information Retrieval

• Integration with Other Musical Elements

We have dealt with only musical instrument timbres and have left other musical

elements such as melodies, rhythm, and harmony as future work. Because we have

already developed methods for other musical elements, for example chord progres-

sion [121], we plan to integrate them. Once the instrogram is integrated with other

musical elements, the similarity for each musical element can be designed and inte-

grated with weighting. This weighting is important because which musical element

is emphasized is dependent on the listener. It is important to develop a user-adaptive

music similarity measure after the above integration.

• Users’ Trial Tests of MIR Application

We have not conducted users’ trial tests of our MIR application. After we inte-

grate the instrogram with other musical elements and develop an integrated music

exploration system, we will conduct users’ trial tests to evaluate the effects of our

instrumentation similarity measure.

• Extension to Integrated Music Exploration and Browsing System

We applied our instrogram analysis to the Query-by-Example retrieval here, but

our technique has a broader range of applications, for example, automatic playlist

generation and music recommendation. In addition, instrogram visualization can be

extended to visualization that helps listeners understand and enjoy music deeply. If

it is transformed into enjoyable animations, it will, for example, be useful for music

education.

Other Future Directions

• Implementation of Instrogram Analysis based on Parallel Processing

The instrogram analysis calculates two kinds of probabilities, nonspecific instru-

ment existence probability (NIEP) and conditional instrument existence probability

(CIEP), which can be calculated independently of each other. In addition, NIEPs
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for each frame (time) are basically independent and CIEPs for each F0 are also

independent. The calculation can therefore be separated into many subcalculations

that do not need to synchronize with one another. This means that the time to

calculate the instrogram can be reduced using parallel processing. We therefore

plan to implement this parallel-processing-based instrogram analysis.

• Integration with Other Sound Recognition

From the viewpoint of computational auditory scene analysis, the frameworks for

recognizing musical sounds and other sounds should be unified. Although we have

already dealt with singer identification [122] and XML-based description of sound

effects [123], the frameworks were separately developed.

• Application to Automatic Music Transcription

The instrogram has been applied to MIR, but it provides more detailed information

that makes possible its use for music transcription. In fact, the flute part of Figure

6.1 shows a trajectory similar to the melody. We therefore plan to develop a music

transcription system based on such instrogram representations.

• Comparison with Human Timbre Perception

Comparing our results with human timbre perception would be interesting. In par-

ticular, comparing TimbreTree obtained in Chapter 4 with the taxonomy based on

human perception will be an important issue for future work. Although hierarchical

classification of timbres based on human perception has been attempted [67, 68, 75],

the scale of the experiments was small because of burdens of subjects. If hypotheses

about human perception can be made using computational processing, burden on

subjects (e.g., variations of conditions of listening tests) could be reduced. A future

issue is to establish such a method for planning strategies of listening tests that

reduce the burden on subjects based on experimental results on a computer.
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Conclusions

In this thesis, we dealt with recognition of musical instruments from audio signals. Al-

though F0 estimation and automatic transcription for musical audio signal processing

have a long history, musical instrument recognition has a relatively short history; studies

were only started in earnest in the late 1990s. Especially in polyphonic music, very few

studies have dealt with musical instrument recognition.

At the first stage, we investigated musical instrument recognition in monophonic

sounds. We pointed out the following two issues at this stage:

Issue 1 Pitch dependency of timbre,

Issue 2 Input of non-registered instruments.

To resolve Issue 1, we proposed an F0-dependent multivariate normal distribution, where

the pitch dependency of timbre is approximated as a function of F0. To resolve Issue 2, we

proposed category-level recognition of non-registered instruments. When a given sound

is registered, its instrument name, e.g. violin, is identified. Even if it is not registered, its

category name, e.g. strings, can be identified. The effects of these proposals were tested

on a monophonic musical instrument sound database.

At the second stage, we scaled up the target of instrument recognition from mono-

phonic to polyphonic sounds. We pointed out the following two issues in order to deal

with polyphonic music:

Issue 3 Overlapping of simultaneously played notes,

Issue 4 Unreliability of the precedent note estimation process.

To resolve Issue 3, we proposed a method for feature weighting based on how each feature

suffered from the overlapping. This feature weighting has been achieved with a mixed-
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sound template, which is a set of training data extracted from polyphonic musical audio

signals, and linear discriminant analysis (LDA). To resolve Issue 4, we proposed a novel

musical instrument recognition framework that does not explicitly use note estimation.

The effects of these proposals were tested on audio signals of polyphonic music. In addi-

tion, we developed a prototype system of MIR using our musical instrument recognition

technique.

We summarize each chapter as follows.

In Chapter 1, we first described the motivation for and goal of this study. We then

briefly described the above-mentioned issues and approaches.

In Chapter 2, we reviewed state-of-the-art work in related fields. The review covers

a wide range of topics, from musical audio signal processing to content-based MIR. We

then discussed the positioning of this thesis from different viewpoints.

In Chapter 3, we proposed a method for coping with the pitch dependency of timbre,

called an F0-dependent multivariate normal distribution. The key idea behind this is

to approximate feature variations caused by pitch as a function of F0. Because it is

not easy in general to extract a factor causing feature variations as a physical value, it

is also difficult to approximate the relationship between varied features and the factor

causing the feature variations like in our approach. On the other hand, we focused on

pitch, which can be extracted as F0, as a factor causing feature variations. The F0-

dependent multivariate normal distribution involves a mean vector each element of which

is designed as a function of F0. This F0-dependent mean function represents the pitch

dependency of timbres while the F0-normalized covariance, which is the other parameter of

the F0-dependent multivariate normal distribution, represents the non-pitch dependency

of timbres. Experimental results from 6,247 monophonic sounds of 19 instruments showed

that the recognition rate was improved from 75.73% to 79.73%. This performance is

considered state-of-the-art.

In Chapter 4, we resolved the problem of non-registered instruments by recognizing

instruments at the category level even when they were not registered. Previously, the

importance of dealing with non-registered instruments has not been pointed out. All of

the previous studies assumed that all of the instruments to be recognized in given audio

signals are included in the training data. In practice, however, it is difficult to thoroughly

prepare the training data to cover all existing instruments. We therefore pointed out

the importance of dealing with non-registered instruments and proposed their category-
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level recognition as a solution. For the category-level recognition, it is important to

appropriately design a musical instrument taxonomy. Thus we proposed a method for

constructing musical instrument taxonomy from acoustic similarities using hierarchical

clustering. We called the taxonomy based on acoustic similarities TimbreTree. When we

gave electric sounds that are similar to but different from the sounds of real instruments

to a system that had been trained in the sounds of real instruments, the system correctly

recognized the categories of the given sounds, distinguishing them from those of the

trained real instruments. We also discussed the differences between TimbreTree and the

musical instrument taxonomy built based on knowledge of the mechanisms of instruments.

In Chapter 5, we provided a new solution to Issue 3. Our solution is to weight features

such that features suffering more from overlapping have lower weights and those suffering

less have higher weights. This feature weighting was achieved by collecting training data

extracted from polyphonic sounds and applying LDA to them. Although the approach

of collecting training data from polyphonic sounds is simple, no previous studies had at-

tempted it. One possible reason may be that a tremendously large amount of data is

required to prepare a thorough training data set containing all possible sound combina-

tions. From our experiments, however, we found that a data set extracted from a few

musical pieces was sufficient to improve the robustness of instrument recognition in poly-

phonic music. Furthermore, we improved instrument recognition using musical context.

Use of musical context has made it possible to avoid musically unnatural errors by taking

the temporal continuity of melodies into consideration. By combining these two methods

and the F0-dependent multivariate normal distribution, we achieved recognition rates of

84.1% for duo, 77.6% for trio, and 72.3% for quartet music. This performance is also

considered state-of-the-art.

In Chapter 6, we proposed a novel musical instrument recognition framework called

the instrogram analysis. The instrogram is a time-frequency representation of instrument

existence probabilities (IEPs), each of which is the probability that the sound of each tar-

get instrument exists at each time and each F0. By formulating instrument recognition

as the problem of calculating the IEP at each time and each F0 for every target instru-

ment, we have made it possible to omit the preceding processing such as onset detection

and F0 estimation, which are still challenging problems for polyphonic music. The IEP

is decomposed into two probabilities: the nonspecific instrument existence probability

(NIEP) and the conditional instrument existence probability (CIEP). The NIEP is cal-
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culated using the PreFEst and the CIEP is calculated using hidden Markov models. The

main reason for the robustness of the instrogram analysis is that the NIEP and CIEP can

be calculated independently; calculation of one probability does not negatively influence

calculation of the other, unlike the conventional framework where note estimation and in-

strument determination are sequentially connected. Experiments were conducted on not

only synthesized music but also real performance recordings of classical and jazz music.

In Chapter 7, we developed a prototype system of similarity-based MIR by apply-

ing the instrogram analysis. Because most previous similarity-based MIR systems used

low-level features such as MFCCs, similarities for musical elements such as the melody,

rhythm, harmony, and instrumentation could not be separately measured. The music

similarity measure that we developed based on the instrogram representation can be con-

sidered the significant first step towards music similarity separately measured for each

musical element, because instrumentation is an important factor determining the impres-

sion of music.

In Chapter 8, we discussed the major contributions of this study towards different

research fields. We described that this study contributes, in particular, to the fields of

computational auditory scene analysis, content-based MIR, and music visualization. We

also discussed remaining issues and future directions of research.

We thus achieved development of a processing module that recognizes musical instru-

ments from audio signals of polyphonic music. We hope that our study will trigger further

attempts to clarify the mechanism of understanding music and ultimately to develop a

computer that can understand music.
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